ﻻ يوجد ملخص باللغة العربية
Axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important for $1^{--}$ and $0^{-+}$ heavy quark hybrids. An updated analysis of axial vector charmonium and bottomonium hybrids is presented, including the effects of the dimension-six gluon condensate. The axial vector charmonium and bottomonium hybrid masses are predicted to be 5.13 GeV and 11.32 GeV, respectively. We discuss the implications of this result for the charmonium-like XYZ states and the charmonium hybrid multiplet structure observed in recent lattice calculations.
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been show
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark $(cbar{c}qbar{q})$ or $(cbar{c}sbar{s})$ states with $J^{PC}=1^{--}$. We work at leading order in $alpha_s$, conside
We explore conventional meson-hybrid mixing in $J^{PC}=1^{++}$ heavy quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator between a heavy conventional meson current and heavy hybrid current within the operator product expansion,
We study mixing between conventional and hybrid mesons in vector and axial vector charmonium using QCD Laplace sum-rules. We compute meson-hybrid cross correlators within the operator product expansion, taking into account condensate contributions up
QCD sum-rules are employed to determine whether the X(3872) can be described as a mixed state that couples to $J^{PC}=1^{++}$ charmonium hybrid and $bar D D^*$ molecular currents. After calculating the mixed correlator of hybrid and molecular current