ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fresh Catch of Massive Binaries in the Cygnus OB2 Association

234   0   0.0 ( 0 )
 نشر من قبل Henry A. (Chip) Kobulnicky
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive binary stars may constitute a substantial fraction of progenitors to supernovae and gamma-ray bursts, and the distribution of their orbital characteristics holds clues to the formation process of massive stars. As a contribution to securing statistics on OB-type binaries, we report the discovery and orbital parameters for five new systems as part of the Cygnus OB2 Radial Velocity Survey. Four of the new systems (MT070, MT174, MT267, and MT734 (a.k.a. VI Cygni #11) are single-lined spectroscopic binaries while one (MT103) is a double-lined system (B1V+B2V). MT070 is noteworthy as the longest period system yet measured in Cyg OB2, with P=6.2 yr. The other four systems have periods ranging between 4 and 73 days. MT174 is noteworthy for having a probable mass ratio q<0.1, making it a candidate progenitor to a low-mass X-ray binary. These measurements bring the total number of massive binaries in Cyg OB2 to 25, the most currently known in any single cluster or association.



قيم البحث

اقرأ أيضاً

The Cygnus complex is one of the most powerful star forming regions at a close distance from the Sun (~1.4 kpc). Its richest OB association Cygnus OB2 is known to harbor many tens of O-type stars and hundreds of B-type stars, providing a large homoge neous population of OB stars that can be analyzed. Many studies of its massive population have been developed in the last decades, although the total number of OB stars is still incomplete. Our aim is to increase the sample of O and B members of Cygnus OB2 and its surroundings by spectroscopically classifying 61 candidates as possible OB-type members of Cygnus OB2. We have obtained new blue intermediate-resolution spectra suitable for spectral classification of the 61 candidates in Cygnus OB2 and surroundings. We thus performed a spectral classification of the sample using He I-II and metal lines rates, as well as the Marxist Ghost Buster (MGB) software for O-type stars and the IACOB standards catalog for B-type stars. Out of the 61 candidates, we have classified 42 stars as new massive OB-type stars, earlier than B3, in Cygnus OB2 and surroundings, including 11 O-type stars. The other candidates are discarded as they display later spectral types inconsistent with membership in the association. However, the magnitude cutoff and dust extinction introduce an incompleteness. Many O and early B stars at B > 16 mag are still undiscovered in the region. Finally, we have studied the age and extinction distribution of our sample within the region, placing them in the Hertzsprung-Russell Diagram using different stellar models in order to assess age uncertainties. Massive star formation in Cygnus OB2 seems to have proceeded from lower to higher Galactic longitudes, regardless of the details of the models used. The correlation between age and Galactic longitude previously found in the region is now confirmed.
We present a large-scale study of diffuse X-ray emission in the nearby massive stellar association Cygnus OB2 as part of the Chandra Cygnus OB2 Legacy Program. We used 40 Chandra X-ray ACIS-I observations covering $sim$1.0 deg$^2$. After removing 792 4 point-like sources detected in our survey, background-corrected X-ray emission, the adaptive smoothing reveals large-scale diffuse X-ray emission. Diffuse emission was detected in the sub-bands Soft [0.5 : 1.2] and Medium [1.2 : 2.5], and marginally in the Hard [2.5 : 7.0] keV band. From X-ray spectral analysis of stacked spectra we compute a total [0.5 : 7.0 keV] diffuse X-ray luminosity of L$_{rm x}^{rm diff}approx$4.2$times$10$^{rm 34}$ erg s$^{-1}$, characterized with plasma temperature components at kT$approx$ 0.11, 0.40 and 1.18 keV, respectively. The HI absorption column density corresponding to these temperatures has a distribution consistent with N$_{rm H}$ = 0.43, 0.80 and 1.39 $times$10$^{22}$ cm$^{-2}$. The extended medium band energy emission likely arises from O-type stellar winds thermalized by wind-wind collisions in the most populated regions of the association, while the soft band emission probably arises from less energetic termination shocks against the surrounding Interstellar-Medium. Super-soft and Soft diffuse emission appears more widely dispersed and intense than the medium band emission. The diffuse X-ray emission is generally spatially coincident with low-extinction regions that we attribute to the ubiquitous influence of powerful stellar winds from massive stars and their interaction with the local Interstellar-Medium. Diffuse X-ray emission is volume-filling, rather than edge-brightened, oppositely to other star-forming regions. We reveal the first observational evidence of X-ray haloes around some evolved massive stars.
The formation of stars in massive clusters is one of the main modes of the star formation process. However, the study of massive star forming regions is hampered by their typically large distances to the Sun. One exception to this is the massive star forming region Cygnus OB2 in the Cygnus X region, at the distance of about 1400 pc. Cygnus OB2 hosts very rich populations of massive and low-mass stars, being the best target in our Galaxy to study the formation of stars, circumstellar disks, and planets in presence of massive stars. In this paper we combine a wide and deep set of photometric data, from the r band to 24 micron, in order to select the disk bearing population of stars in Cygnus OB2 and identify the class I, class II, and stars with transition and pre-transition disks. We selected 1843 sources with infrared excesses in an area of 1 degree x 1 degree centered on Cyg OB2 in several evolutionary stages: 8.4% class I, 13.1% flat-spectrum sources, 72.9% class II, 2.3% pre-transition disks, and 3.3% transition disks. The spatial distribution of these sources shows a central cluster surrounded by a annular overdensity and some clumps of recent star formation in the outer region. Several candidate subclusters are identified, both along the overdensity and in the rest of the association.
We obtained the near-infrared (NIR) high-resolution ($Requivlambda/Deltalambdasim20,000$) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs ). The WINERED spectrograph mounted on the Araki 1.3m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED ($0.91<lambda<1.36mu$m) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C$_2$ molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, $lambdalambda$10780, 10792, 11797, 12623, and 13175 are found to constitute a family, in which the DIBs are correlated well over the wide EW range. In contrast, the EW of $lambda$10504 is found to remain almost constant over the stars in Cyg OB2. The extinction estimated from the average EW of $lambda$10504 ($A_Vsim3.6$mag) roughly corresponds to the lower limit of the extinction distribution of OB stars in Cyg OB2. This suggests that $lambda$10504 is absorbed only by the foreground clouds, implying that the carrier of $lambda$10504 is completely destroyed in Cyg OB2, probably by the strong UV radiation field. The different behaviors of the DIBs may be caused by different properties of the DIB carriers.
82 - Becky Arnold 2020
The kinematic structure of the Cygnus OB2 association is investigated. No evidence of expansion or contraction is found at any scale within the region. Stars that are within $sim$ 0.5 parsecs of one another are found to have more similar velocities t han would be expected by random chance, and so it is concluded that velocity substructure exists on these scales. At larger scales velocity substructure is not found. We suggest that bound substructures exist on scales of $sim$ 0.5 parsecs, despite the region as a whole being unbound. We further suggest that any velocity substructure that existed on scales > 0.5 parsecs has been erased. The results of this study are then compared to those of other kinematic studies of Cygnus OB2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا