ﻻ يوجد ملخص باللغة العربية
We present an inelastic neutron scattering study of phonon lineshapes in the vortex state of the type-II superconductor YNi$_2$B$_2$C. In a previous study [Phys. Rev. Lett. textbf{101}, 237002 (2008)] it was shown that certain phonons exhibit a clear signature of the superconducting gap $2Delta$ on entering the superconducting state. Our interest was to find out whether or not the lineshape of such phonons reflects the inhomogeneous nature of the vortex state induced by a magnetic field smaller than the upper critical field $B_{c2}$ .We found that this is indeed the case because the observed phonon lineshapes can be well described by a model considering the phonon as a local probe of the spatial variation of the superconducting gap. We found that even at $B=3,rm{T}$, where the inter-vortex distance is less than $300,$AA, the phonon lineshape still shows evidence for a variation of the gap.
We report an inelastic neutron scattering investigation of phonons with energies up to 159 meV in the conventional superconductor YNi$_2$B$_2$C. Using the SWEEP mode, a newly developed time-of-flight technique involving the continuous rotation of a s
We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kO
We present a combined density-functional-perturbation-theory and inelastic neutron scattering study of the lattice dynamical properties of YNi2B2C. In general, very good agreement was found between theory and experiment for both phonon energies and l
If history teaches us anything, it is that the next breakthrough in superconductivity will not be the result of surveying the history of past breakthroughs, as they have almost always been a matter of serendipity resulting from undirected exploration
Discovery of high-temperature superconductivity in hydrogen-rich compounds has fuelled the enthusiasm for finding materials with more promising superconducting properties among hydrides. However, the ultrahigh pressure needed to synthesize and mainta