ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on non-Abelian two-form gauge fields

151   0   0.0 ( 0 )
 نشر من قبل Yutaka Matsuo
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by application to multiple M5 branes, we study some properties of non-Abelian two-form gauge theories. We note that the fake curvature condition which is commonly used in the literature would restrict the dynamics to be either a free theory or a topological system. We then propose a modification of transformation law which simplifies the gauge transformation of 3-form field strength and enables us to write down a gauge invariant action. We then argue that a generalization of Stueckelberg mechanism naturally gives mass to the two-form gauge field. For the application to multiple M5-branes, it should be identified with the KK modes.



قيم البحث

اقرأ أيضاً

A brane-world $SU(5)$ GUT model with global non-Abelian vortices is constructed in six-dimensional spacetime. We find a solution with a vortex associated to $SU(3)$ separated from another vortex associated to $SU(2)$. This $3-2$ split configuration a chieves a geometric Higgs mechanism for $SU(5)to SU(3)times SU(2)times U(1)$ symmetry breaking. A simple deformation potential induces a domain wall between non-Abelian vortices, leading to a linear confining potential. The confinement stabilizes the vortex separation moduli, and assures the vorticity of $SU(3)$ group and of $SU(2)$ group to be identical. This dictates the equality of the numbers of fermion zero modes in the fundamental representation of $SU(3)$ (quarks) and of $SU(2)$ (leptons), leading to quark-lepton generations. The standard model massless gauge fields are localized on the non-Abelian vortices thanks to a field-dependent gauge kinetic function. We perform fluctuation analysis with an appropriate gauge fixing and obtain a four-dimensional effective Lagrangian of unbroken and broken gauge fields at quadratic order. We find that $SU(3) times SU(2) times U(1)$ gauge fields are localized on the vortices and exactly massless. Complications in analyzing the spectra of gauge fields with the nontrivial gauge kinetic function are neatly worked out by a vector-analysis like method.
Dynamical localization of non-Abelian gauge fields in non-compact flat $D$ dimensions is worked out. The localization takes place via a field-dependent gauge kinetic term when a field condenses in a finite region of spacetime. Such a situation typica lly arises in the presence of topological solitons. We construct four-dimensional low-energy effective Lagrangian up to the quadratic order in a universal manner applicable to any spacetime dimensions. We devise an extension of the $R_xi$ gauge to separate physical and unphysical modes clearly. Out of the D-dimensional non-Abelian gauge fields, the physical massless modes reside only in the four-dimensional components, whereas they are absent in the extra-dimensional components. The universality of non-Abelian gauge charges holds due to the unbroken four-dimensional gauge invariance. We illustrate our methods with models in $D=5$ (domain walls), in $D=6$ (vortices), and in $D=7$.
68 - Peter Schupp 2001
We present a brief introduction to the construction of gauge theories on noncommutative spaces with star products. Particular emphasis is given to issues related to non-Abelian gauge groups and charge quantization. This talk is based on joined work w ith B. Jurco, J. Madore, L. Moeller, S. Schraml and J. Wess.
Non-Abelian gauge theories with composite fields are examined in the background field method. Generating functionals of Greens functions for a Yang--Mills theory with composite and background fields are introduced, including the generating functional of vertex Greens functions (effective action). The corresponding Ward identities are obtained, and the issue of gauge dependence is investigated. A gauge variation of the effective action is found in terms of a nilpotent operator depending on the composite and background fields. On-shell independence from the choice of gauge fixing for the effective action is established. In the study of the Ward identities and gauge dependence, finite field-dependent BRST transformations with a background field are introduced and utilized on a systematic basis. On the one hand, this involves the consideration of (modified) Ward identities with a field-dependent anticommuting parameter, also depending on a non-trivial background. On the other hand, the issue of gauge dependence is studied with reference to a finite variation of the gauge Fermion. The concept of a joint introduction of composite and background fields to non-Abelian gauge theories is exemplified by the Gribov--Zwanziger theory and by the Volovich--Katanaev model of two-dimensional gravity with dynamical torsion.
176 - R. P. Malik 2007
We capture the off-shell as well as the on-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry invariance of the Lagrangian densities of the four (3 + 1)-dimensional (4D) (non-)Abelian 1-form gauge theories within the framework of the superfield formalism. In particular, we provide the geometrical interpretations for (i) the above nilpotent symmetry invariance, and (ii) the above Lagrangian densities, in the language of the specific quantities defined in the domain of the above superfield formalism. Some of the subtle points, connected with the 4D (non-)Abelian 1-form gauge theories, are clarified within the framework of the above superfield formalism where the 4D ordinary gauge theories are considered on the (4, 2)-dimensional supermanifold parametrized by the four spacetime coordinates x^mu (with mu = 0, 1, 2, 3) and a pair of Grassmannian variables theta and bartheta. One of the key results of our present investigation is a great deal of simplification in the geometrical understanding of the nilpotent (anti-)BRST symmetry invariance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا