ترغب بنشر مسار تعليمي؟ اضغط هنا

State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

61   0   0.0 ( 0 )
 نشر من قبل Tauno Palomaki
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information.

قيم البحث

اقرأ أيضاً

98 - Eyob A. Sete , H. Eleuch 2015
We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q-factor it is possi ble to achieve a transfer efficiency of $99.4%$ by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of $96%$ employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.
We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting devices connected by transmission lines and designed to control a mechanical oscillator coupled to one of the devices. The network features an electromech anical device and a tunable controller that coherently receives, processes and feeds back continuous microwave signals that modify the dynamics and readout of the mechanical state. While previous electromechanical systems represent some compromise between efficient control and efficient readout of the mechanical state, as set by the electromagnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and continuously tuned between both extremes much faster than the mechanical response time. We demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than $10^4$ times the mechanical response rate. The system is easy to build and suggests that some useful functions may arise most naturally at the network-level of modular, quantum electromagnetic devices.
We measure the dispersive energy-level shift of an $LC$ resonator magnetically coupled to a superconducting qubit, which clearly shows that our system operates in the ultrastrong coupling regime. The large mutual kinetic inductance provides a couplin g energy of $approx0.82$~GHz, requiring the addition of counter-rotating-wave terms in the description of the Jaynes-Cummings model. We find a 50~MHz Bloch-Siegert shift when the qubit is in its symmetry point, fully consistent with our analytical model.
The dynamical Casimir effect (DCE) manifests itself in the ultrastrong matter-field coupling (USC) regime, as a consequence of the nonadiabatic change of some parameters of a system. We show that the DCE is a fundamental limitation for standard quant um protocols based on quantum Rabi oscillations, implying that new schemes are required to implement high-fidelity ultrafast quantum gates. Our results are illustrated by means of a paradigmatic quantum communication protocol, i.e., quantum state transfer.
A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical back-action is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the cavity linewidth. It is shown that the final average occupancy can be retrieved directly from the optical output spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا