ترغب بنشر مسار تعليمي؟ اضغط هنا

Demographics and Physical Properties of Gas Out/Inflows at 0.4 < z < 1.4

129   0   0.0 ( 0 )
 نشر من قبل Crystal Martin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Crystal L. Martin




اسأل ChatGPT حول البحث

We present Keck/LRIS spectra of over 200 galaxies with well-determined redshifts between 0.4 and 1.4. We combine new measurements of near-ultraviolet, low-ionization absorption lines with previously measured masses, luminosities, colors, and star formation rates to describe the demographics and properties of galactic flows. Among star-forming galaxies with blue colors, we find a net blueshift of the FeII absorption greater than 200 km/s (100 km/s) towards 2.5% (20%) of the galaxies. The fraction of blueshifted spectra does not vary significantly with stellar mass, color, or luminosity but does decline at specific star formation rates less than roughly 0.8 Gyr^{-1}. The insensitivity of the blueshifted fraction to galaxy properties requires collimated outflows at these redshifts, while the decline in outflow fraction with increasing blueshift might reflect the angular dependence of the outflow velocity. The low detection rate of infalling gas, 3 to 6% of the spectra, suggests an origin in (enriched) streams favorably aligned with our sightline. We find 4 of these 9 infalling streams have projected velocities commensurate with the kinematics of an extended disk or satellite galaxy. The strength of the MgII absorption increases with stellar mass, B-band luminosity, and U-B color, trends arising from a combination of more interstellar absorption at the systemic velocity and less emission filling in more massive galaxies. Our results provides a new quantitative understanding of gas flows between galaxies and the circumgalactic medium over a critical period in galaxy evolution.

قيم البحث

اقرأ أيضاً

We present a systematic investigation of the circumgalactic medium (CGM) within projected distances d<160 kpc of luminous red galaxies (LRGs). The sample comprises 16 intermediate-redshift (z=0.21-0.55) LRGs of stellar mass M_star>1e11 M_sun. Combini ng far-ultraviolet Cosmic Origin Spectrograph spectra from the Hubble Space Telescope and optical echelle spectra from the ground enables a detailed ionization analysis based on resolved component structures of a suite of absorption transitions, including the full HI Lyman series and various ionic metal transitions. By comparing the relative abundances of different ions in individually-matched components, we show that cool gas (T~1e4 K) density and metallicity can vary by more than a factor of ten in in an LRG halo. Specifically, metal-poor absorbing components with <1/10 solar metallicity are seen in 50% of the LRG halos, while gas with solar and super-solar metallicity is also common. These results indicate a complex multiphase structure and poor chemical mixing in these quiescent halos. We calculate the total surface mass density of cool gas, Sigma_cool, by applying the estimated ionization fraction corrections to the observed HI column densities. The radial profile of Sigma_cool is best-described by a projected Einasto profile of slope alpha=1 and scale radius r_s=48 kpc. We find that typical LRGs at z~0.4 contain cool gas mass of M_cool= (1-2) x1e10 M_sun at d<160 kpc (or as much as 4x1e10 M_sun at d<500 kpc), comparable to the cool CGM mass of star-forming galaxies. Furthermore, we show that high-ionization OVI and low-ionization absorption species exhibit distinct velocity profiles, highlighting their different physical origins. We discuss the implications of our findings for the origin and fate of cool gas in LRG halos.
72 - Iu. Babyk , I. Vavilova 2013
We analyzed the luminosity-temperature-mass of gas (L_{X} - T - M_{g}) relation for sample of galaxy clusters that have been observed by the Chandra satellite. We used 21 high-redshift clusters (0.4 < z < 1.4). We assumed a power-law relation betwe en the X-ray luminosity of galaxy clusters and its temperature and redshift L_{X} ~ (1+z)^{A_{L_{X}T}}T^{beta_{L_{X}T}}. We obtained that for an Omega_{m} = 0.27 and Lambda = 0.73 universe, A_{L_{X}T} = 1.50 +/- 0.23, beta_{L_{X}T} = 2.55 +/- 0.07 (for 68% confidence level). Then, we found the evolution of M_{g} - T relation is small. We assumed a power-law relation in the form M_{g} ~ (1+z)^{A_{M_{g}T}}T^{beta_{M_{g}T}} also, and we obtained A_{M_{g}T} = -0.58 +/- 0.13 and beta_{M_{g}T} = 1.77 +/- 0.16. We also obtained the evolution in M_{g} - L_{X} relation, we can conclude that such relation has strong evolution for our cosmological parameters. We used M_{g} ~ (1+z)^{A_{M_{g}L_{X}}}L^{beta_{M_{g}L_{X}}} equation for assuming this relation and we found A_{M_{g}L_{X}} ~ -1.86 +/- 0.34 and beta_{M_{g}L_{X}} = 0.73 +/- 0.15 for Omega_{m} = 0.27 and Lambda = 0.73 universe. In overal, the clusters on big redshifts have much stronger evolution between correlations of luminosity, temperature and mass, then such correlations for clusters at small redshifts. We can conclude that such strong evolution in L_{X} - T - M_{g} correlations indicate that in the past the clusters have bigger temperature and higher luminosity.
280 - V. Casasola 2013
The formation of the first virialized structures in overdensities dates back to ~9 Gyr ago, i.e. in the redshift range z ~ 1.4 - 1.6. Some models of structure formation predict that the star formation activity in clusters was high at that epoch, impl ying large reservoirs of cold molecular gas. Aiming at finding a trace of this expected high molecular gas content in primeval clusters, we searched for the 12CO(2-1) line emission in the most luminous active galactic nucleus (AGN) of the cluster around the radio galaxy 7C 1756+6520 at z ~ 1.4, one of the farthest spectroscopic confirmed clusters. This AGN, called AGN.1317, is located in the neighbourhood of the central radio galaxy at a projected distance of ~780 kpc. The IRAM Plateau de Bure Interferometer was used to investigate the molecular gas quantity in AGN.1317, observing the 12CO(2-1) emission line. We detect CO emission in an AGN belonging to a galaxy cluster at z ~ 1.4. We measured a molecular gas mass of 1.1 x 10^10 Msun, comparable to that found in submillimeter galaxies. In optical images, AGN.1317 does not seem to be part of a galaxy interaction or merger.We also derived the nearly instantaneous star formation rate (SFR) from Halpha flux obtaining a SFR ~65 Msun/yr. This suggests that AGN.1317 is actively forming stars and will exhaust its reservoir of cold gas in ~0.2-1.0 Gyr.
67 - A. Hamanowicz 2019
We present results of the MUSE-ALMA Halos, an ongoing study of the Circum-Galactic Medium (CGM) of low redshift galaxies (z < 1.4), currently comprising 14 strong HI absorbers in five quasar fields. We detect 43 galaxies associated with absorbers dow n to star formation rate (SFR) limits of 0.01-0.1 solar masses/yr, found within impact parameters (b) of 250 kpc from the quasar sightline. Excluding the targeted absorbers, we report a high detection rate of 89 per cent and find that most absorption systems are associated with pairs or groups of galaxies (three to eleven members). We note that galaxies with the smallest impact parameters are not necessarily the closest to the absorbing gas in velocity space. Using a multi-wavelength dataset (UVES/HIRES, HST, MUSE), we combine metal and HI column densities, allowing for derivation of the lower limits of neutral gas metallicity as well as emission line diagnostics (SFR, metallicities) of the ionised gas in the galaxies. We find that groups of associated galaxies follow the canonical relations of N(HI) -- b and W_r(2796) -- b, defining a region in parameter space below which no absorbers are detected. The metallicity of the ISM of associated galaxies, when measured, is higher than the metallicity limits of the absorber. In summary, our findings suggest that the physical properties of the CGM of complex group environments would benefit from associating the kinematics of individual absorbing components with each galaxy member.
We have studied the evolution of high redshift quiescent galaxies over an effective area of ~1.7 deg^2 in the COSMOS field. Galaxies have been divided according to their star-formation activity and the evolution of the different populations has been investigated in detail. We have studied an IRAC (mag_3.6 < 22.0) selected sample of ~18000 galaxies at z > 1.4 with multi-wavelength coverage. We have derived accurate photometric redshifts (sigma=0.06) and other important physical parameters through a SED-fitting procedure. We have divided our sample into actively star-forming, intermediate and quiescent galaxies depending on their specific star formation rate. We have computed the galaxy stellar mass function of the total sample and the different populations at z=1.4-3.0. We have studied the properties of high redshift quiescent galaxies finding that they are old (1-4 Gyr), massive (log(M/M_sun)~10.65), weakly star forming stellar populations with low dust extinction (E(B-V) < 0.15) and small e-folding time scales (tau ~ 0.1-0.3 Gyr). We observe a significant evolution of the quiescent stellar mass function from 2.5 < z < 3.0 to 1.4 < z < 1.6, increasing by ~ 1 dex in this redshift interval. We find that z ~ 1.5 is an epoch of transition of the GSMF. The fraction of star-forming galaxies decreases from 60% to 20% from z ~ 2.5-3.0 to z ~ 1.4-1.6 for log(M/M_sun) > 11, while the quiescent population increases from 10% to 50% at the same redshift and mass intervals. We compare the fraction of quiescent galaxies derived with that predicted by theoretical models and find that the Kitzbichler & White (2007) model is the one that better reproduces the data. Finally, we calculate the stellar mass density of the star-forming and quiescent populations finding that there is already a significant number of quiescent galaxies at z > 2.5 (rho~6.0 MsunMpc^-3).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا