ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanocarbon-Based photovoltaics

46   0   0.0 ( 0 )
 نشر من قبل Marco Bernardi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells - namely solution processable, potentially flexible, and chemically tunable - but with significantly increased photostability and the possibility to revert photodegradation. The device active layer composition is optimized using ab-initio density functional theory calculations to predict type-II band alignment and Schottky barrier formation. The best device fabricated is composed of PC70BM fullerene, semiconducting single-walled carbon nanotubes and reduced graphene oxide. It achieves a power conversion efficiency of 1.3% - a record for solar cells based on carbon as the active material - and shows significantly improved lifetime than a polymer-based device. We calculate efficiency limits of up to 13% for the devices fabricated in this work, comparable to those predicted for polymer solar cells. There is great promise for improving carbon-based solar cells considering the novelty of this type of device, the superior photostability, and the availability of a large number of carbon materials with yet untapped potential for photovoltaics. Our results indicate a new strategy for efficient carbon-based, solution-processable, thin film, photostable solar cells.

قيم البحث

اقرأ أيضاً

We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, $FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3$, that can deliver 14.8 % efficiency. By co mbining this material with a wider bandgap $FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3$ material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable all perovskite thin film solar cells to reach the highest efficiencies in the long term at the lowest costs.
Thermal management is an important challenge in modern electronics, avionics, automotive, and energy storage systems. While passive thermal solutions (like heat sinks or heat spreaders) are often used, actively modulating heat flow (e.g. via thermal switches or diodes) would offer additional degrees of control over the management of thermal transients and system reliability. Here we report the first thermal switch based on a flexible, collapsible graphene membrane, with low operating voltage, < 2 V. We also employ active-mode scanning thermal microscopy (SThM) to measure the device behavior and switching in real time. A compact analytical thermal model is developed for the general case of a thermal switch based on a double-clamped suspended membrane, highlighting the thermal and electrical design challenges. System-level modeling demonstrates the thermal trade-offs between modulating temperature swing and average temperature as a function of switching ratio. These graphene-based thermal switches present new opportunities for active control of fast (even nanosecond) thermal transients in densely integrated systems.
The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one s tack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in the device fabrication.
BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, non-toxicity with earth abundant eleme nts, it is thus a promising candidate for thin film solar cells. However, its reported band gap in the range of 1.7-1.8 eV is larger than the optimal value required to reach the Shockley-Queisser limit of a single junction solar cell. Here we report the synthesis of Ba(Zr1-xTix)S3 perovskite compounds with a reduced band gap. It is found that Ti alloying is extremely effective in band gap reduction of BaZrS3: a mere 4 at% alloying decreases the band gap from 1.78 to 1.51 eV, resulting in a theoretical maximum power conversion efficiency of 32%. Higher Ti-alloying concentration is found to destabilize the distorted chalcogenide perovskite phase.
156 - Enze Zhang , Yibo Jin , Xiang Yuan 2015
Atomically-thin two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, we report on the fabrication of ReS2 field-effect t ransistors via the encapsulation of ReS2 nanosheets in a high-k{appa} Al2O3 dielectric environment. Low-temperature transport measurements allowed us to observe a direct metal-to-insulator transition originating from strong electron-electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate-tunable photoresponsivity up to 16.14 A/W and external quantum efficiency reaching 3,168 %, showing a competitive device performance to those reported in graphene, MoSe2, GaS and GaSe-based photodetectors. Our study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا