ﻻ يوجد ملخص باللغة العربية
This paper develops a Bayesian network-based method for the calibration of multi-physics models, integrating various sources of uncertainty with information from computational models and experimental data. We adopt the Kennedy and OHagan (KOH) framework for model calibration under uncertainty, and develop extensions to multi-physics models and various scenarios of available data. Both aleatoric uncertainty (due to natural variability) and epistemic uncertainty (due to lack of information, including data uncertainty and model uncertainty) are accounted for in the calibration process. Challenging aspects of Bayesian calibration for multi-physics models are investigated, including: (1) calibration with different forms of experimental data (e.g., interval data and time series data), (2) determination of the identifiability of model parameters when the analytical expression of model is known or unknown, (3) calibration of multiple physics models sharing common parameters, which enables efficient use of data especially when the experimental resources are limited. A first-order Taylor series expansion-based method is proposed to determine which model parameters are identifiable. Following the KOH framework, a probabilistic discrepancy function is estimated and added to the prediction of the calibrated model, attempting to account for model uncertainty. This discrepancy function is modeled as a Gaussian process when sufficient data are available for multiple model input combinations, and is modeled as a random variable when the available data are limited. The overall approach is illustrated using two application examples related to microelectromechanical system (MEMS) devices: (1) calibration of a dielectric charging model with time-series data, and (2) calibration of two physics models (pull-in voltage and creep) using measurements of different physical quantities in different devices.
We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes theorem and its applications. In particular we discuss about how to calculate simpl
Fitting a simplifying model with several parameters to real data of complex objects is a highly nontrivial task, but enables the possibility to get insights into the objects physics. Here, we present a method to infer the parameters of the model, the
In nuclear engineering, modeling and simulations (M&Ss) are widely applied to support risk-informed safety analysis. Since nuclear safety analysis has important implications, a convincing validation process is needed to assess simulation adequacy, i.
Using the latest numerical simulations of rotating stellar core collapse, we present a Bayesian framework to extract the physical information encoded in noisy gravitational wave signals. We fit Bayesian principal component regression models with know
Despite of their success, the results of first-principles quantum mechanical calculations contain inherent numerical errors caused by various approximations. We propose here a neural-network algorithm to greatly reduce these inherent errors. As a dem