ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of Mossbauer spectra in the energy and time domain with neural networks

164   0   0.0 ( 0 )
 نشر من قبل Hauke Paulsen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An artificial neural network for extracting reasonable and fast estimates of hyperfine parameters from Mossbauer spectra in the energy or time domain is outlined. First promising results for determining the asymmetry of the electric field gradient at the nucleus of a diamagnetic iron center as derived with different types of neural networks are reported.


قيم البحث

اقرأ أيضاً

184 - Yu Zeng , Kebei Jiang , Jie Chen 2018
One of the most crucial tasks in seismic reflection imaging is to identify the salt bodies with high precision. Traditionally, this is accomplished by visually picking the salt/sediment boundaries, which requires a great amount of manual work and may introduce systematic bias. With recent progress of deep learning algorithm and growing computational power, a great deal of efforts have been made to replace human effort with machine power in salt body interpretation. Currently, the method of Convolutional neural networks (CNN) is revolutionizing the computer vision field and has been a hot topic in the image analysis. In this paper, the benefits of CNN-based classification are demonstrated by using a state-of-art network structure U-Net, along with the residual learning framework ResNet, to delineate salt body with high precision. Network adjustments, including the Exponential Linear Units (ELU) activation function, the Lov{a}sz-Softmax loss function, and stratified $K$-fold cross-validation, have been deployed to further improve the prediction accuracy. The preliminary result using SEG Advanced Modeling (SEAM) data shows good agreement between the predicted salt body and manually interpreted salt body, especially in areas with weak reflections. This indicates the great potential of applying CNN for salt-related interpretations.
Using the Mandelstam-Tamm method we derive time-energy uncertainty relations for neutrino oscillations. We demonstrate that the small energy uncertainty of antineutrinos in a recently considered experiment with recoilless resonant (Mossbauer) product ion and absorption of tritium antineutrinos is in conflict with the energy uncertainty which, according to the time-energy uncertainty relation, is necessary for neutrino oscillations to happen. A Mossbauer neutrino experiment could provide a unique possibility to test the applicability of the time-energy uncertainty relation to neutrino oscillations and to reveal the true nature of neutrino oscillations.
Photoionization of molecular species is, essentially, a multi-path interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets ($N_2$) is use d to provide a time-domain route to complete photoionization experiments, in which the rotational wavepacket controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle this methodology provides a time-domain route to complete photoionization experiments, and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.
The possibility of using time-resolved vibronic spectroscopy for spectral analysis of mixtures of chemical compounds with similar optical properties, when traditional methods are inefficient, is demonstrated by using the method of computer simulation . The analysis is carried out by the example of molecules of a series of polyenes (butadiene, hexatraene, octatetraene, decapentaene, and decatetraene), their various cis- and trans-rotational isomers, and phenyl-substituted polyenes. Ranges of relative concentrations of molecules similar in their spectral properties, where reliable interpretation of time-resolved spectra of mixtures and both qualitative and quantitative analyses are possible, are determined. The use of computer simulation methods for oprimizing full-scale experiments in femtosecond spectroscopy is shown to hold much promise.
Machine learning has revolutionized the high-dimensional representations for molecular properties such as potential energy. However, there are scarce machine learning models targeting tensorial properties, which are rotationally covariant. Here, we p ropose tensorial neural network (NN) models to learn both tensorial response and transition properties, in which atomic coordinate vectors are multiplied with scalar NN outputs or their derivatives to preserve the rotationally covariant symmetry. This strategy keeps structural descriptors symmetry invariant so that the resulting tensorial NN models are as efficient as their scalar counterparts. We validate the performance and universality of this approach by learning response properties of water oligomers and liquid water, and transition dipole moment of a model structural unit of proteins. Machine learned tensorial models have enabled efficient simulations of vibrational spectra of liquid water and ultraviolet spectra of realistic proteins, promising feasible and accurate spectroscopic simulations for biomolecules and materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا