ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{deg},-10{deg})

37   0   0.0 ( 0 )
 نشر من قبل Stefan Uttenthaler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of two stellar populations in the Milky Way bulge has been reported recently. We aim at studying the abundances and kinematics of stars in the outer bulge, thereby providing additional constraints on models of its formation. Spectra of 401 red giant stars in a field at (l,b)=(0{deg},-10{deg}) were obtained with FLAMES at the VLT. Stars of luminosities down to below the two bulge red clumps (RCs) are included. From these spectra we measure general metallicities, abundances of Fe and the alpha-elements, and radial velocities (RV) of the stars. These measurements as well as photometric data are compared to simulations with the Besancon and TRILEGAL models of the Galaxy. We confirm the presence of two populations among our sample stars: i) a metal-rich one at [M/H] ~+0.3, comprising about 30% of the sample, with low RV dispersion and low alpha-abundance, and ii) a metal-poor population at [M/H] ~-0.6 with high RV dispersion and high alpha-abundance. The metal-rich population could be connected to the Galactic bar. We identify this population as the carrier of the double RC feature. We do not find a significant difference in metallicity or RV between the two RCs, a small difference in metallicity being probably due to a selection effect. The RV dispersion agrees well with predictions of the Besancon Galaxy model, but the metallicity of the thick bulge model component should be shifted to lower metallicity by 0.2 to 0.3dex to well reproduce the observations. We present evidence that the metallicity distribution function depends on the evolutionary state of the sample stars, suggesting that enhanced mass loss preferentially removes metal-rich stars. We also confirm the decrease of alpha-element over-abundance with increasing metallicity.

قيم البحث

اقرأ أيضاً

We present the Forgotten Quadrant Survey (FQS), an ESO large project that used the 12m antenna of the Arizona Radio Observatory to map the Galactic Plane in the range 220deg$<l<$240deg and -2.5deg$<b<$0deg, both in $^{12}$CO(1-0) and $^{13}$CO(1-0), at a spectral resolution of 0.65 km s$^{-1}$ and 0.26 km s$^{-1}$. Our dataset allows us to easily identify how the molecular dense gas is organised at different spatial scales: from the giant clouds with their denser filamentary networks, down to the clumps and cores that host the newborn stars and to obtain reliable estimates of their key physical parameters. We present the first release of the FQS data and discuss their quality. Spectra with 0.65 km s$^{-1}$ velocity channels have a noise ranging from 0.8 K to 1.3 K for $^{12}$CO(1-0) and from 0.3 K to 0.6 K for $^{13}$CO(1-0). In this paper, we used the $^{12}$CO(1-0) spectral cubes to produce a catalogue of 263 molecular clouds. This is the first selfconsistent, statistical catalogue of molecular clouds of the outer Galaxy, obtained with a subarcminute spatial resolution and therefore able to detect not only the classical giant molecular clouds, but also the small clouds and to resolve the cloud structure at the subparsec scale up to a distance of a few kpc. We found two classes of objects: structures with size above a few parsecs that are typical molecular clouds and may be self-gravitating, and subparsec structures that cannot be in gravitational equilibrium and are likely transient or confined by external pressure. We used the ratio between the Herschel H$_2$ column density and the integrated intensity of the CO lines to calculate the CO conversion factor and we found mean values of (3.3$pm$1.4)$times 10^{20}$ cm$^{-2}$(K km s$^{-1})^{-1}$ and (1.2$pm$0.4)$times 10^{21}$ cm$^{-2}$(K km s$^{-1})^{-1}$, for $^{12}$CO(1-0) and $^{13}$CO(1-0), respectively.
Surveys of the Milky Way at various wavelengths have changed our view of star formation in our Galaxy considerably in recent years. In this paper we give an overview of the GLOSTAR survey, a new survey covering large parts (145 square degrees) of the northern Galactic plane using the Karl G. Jansky Very Large Array (JVLA) in the frequency range 4-8 GHz and the Effelsberg 100-m telescope. This provides for the first time a radio survey covering all angular scales down to 1.5 arcsecond, similar to complementary near-IR and mid-IR galactic plane surveys. We outline the main goals of the survey and give a detailed description of the observations and the data reduction strategy. In our observations we covered the radio continuum in full polarization, as well as the 6.7 GHz methanol maser line, the 4.8~GHz formaldehyde line, and seven radio recombination lines. The observations were conducted in the most compact D configuration of the VLA and in the more extended B configuration. This yielded spatial resolutions of 18 and 1.5 for the two configurations, respectively. We also combined the D configuration images with the Effelsberg 100-m data to provide zero spacing information, and we jointly imaged the D- and B-configuration data for optimal sensitivity of the intermediate spatial ranges. Here we show selected results for the first part of the survey, covering the range of 28 deg <l<36 deg and |b|< 1 deg, including the full low-resolution continuum image, examples of high-resolution images of selected sources, and the first results from the spectral line data.
Synchrotron emission pervades the Galactic plane at low radio frequencies, originating from cosmic ray electrons interacting with the Galactic magnetic field. Using a low-frequency radio telescope, the Murchison Widefield Array (MWA), we measure the free-free absorption of this Galactic synchrotron emission by intervening HII regions along the line of sight. These absorption measurements allow us to calculate the Galactic cosmic-ray electron emissivity behind and in front of 47 detected HII regions in the region $250^circ < l < 355^circ$, $|b| < 2^circ$. We find that all average emissivities between the HII regions and the Galactic edge along the line of sight ($epsilon_b$) are in the range of 0.24$,,sim,,$0.70$,,$K$,,$pc$^{-1}$ with a mean of 0.40$,,$K$,,$pc$^{-1}$ and a variance of 0.10$,,$K$,,$pc$^{-1}$ at 88$,,$MHz. Our best model, the Two-circle model, divides the Galactic disk into three regions using two circles centring on the Galactic centre. It shows a high emissivity region near the Galactic centre, a low emissivity region near the Galactic edge, and a medium emissivity region between these two regions, contrary to the trend found by previous studies.
We report the first results from a survey for 1665, 1667, and 1720 MHz OH emission over a small region of the Outer Galaxy centered at $l approx 105.0deg , b approx +1.0deg$ . This sparse, high-sensitivity survey ($Delta Ta approx Delta Tmb approx 3. 0 - 3.5$ mK rms in 0.55 km/s channels), was carried out as a pilot project with the Green Bank Telescope (GBT, FWHM $approx 7.6$) on a 3 X 9 grid at $0.5deg$ spacing. The pointings chosen correspond with those of the existing $^{12}$CO(1-0) CfA survey of the Galaxy (FWHM $approx 8.4$). With 2-hr integrations, 1667 MHz OH emission was detected with the GBT at $gtrsim 21$ of the 27 survey positions ($geq 78%$ ), confirming the ubiquity of molecular gas in the ISM as traced by this spectral line. With few exceptions, the main OH lines at 1665 and 1667 MHz appear in the ratio of 5:9 characteristic of LTE at our sensitivity levels. No OH absorption features are recorded in the area of the present survey, in agreement with the low levels of continuum background emission in this direction. At each pointing the OH emission appears in several components extending over a range of radial velocity and coinciding with well-known features of Galactic structure such as the Local Arm and the Perseus Arm. In contrast, little CO emission is seen in the survey area; less than half of the $gtrsim 50$ identified OH components show detectable CO at the CfA sensitivity levels, and these are generally faint. There are no CO profiles without OH emission. With few exceptions, peaks in the OH profiles coincide with peaks in the GBT HI spectra (obtained concurrently, FWHM $8.9$), although the converse is not true. We conclude that main-line OH emission is a promising tracer for the dark molecular gas in the Galaxy discovered earlier in Far-IR and gamma-ray emission. Further work is needed to establish the quantitative details of this connection.
102 - M. Zoccali , V. Hill , A. Lecureur 2008
We determine the iron distribution function (IDF) for bulge field stars, in three different fields along the Galactic minor axis and at latitudes b=-4 deg, b=-6 deg, and b=-12 deg. A fourth field including NGC6553 is also included in the discussion. About 800 bulge field K giants were observed with the GIRAFFE spectrograph of FLAMES@VLT at spectral resolution R~20,000. Several of them were observed again with UVES at R~45,000 to insure the accuracy of the measurements. The LTE abundance analysis yielded stellar parameters and iron abundances that allowed us to construct an IDF for the bulge that, for the first time, is based on high-resolution spectroscopy for each individual star. The IDF derived here is centered on solar metallicity, and extends from [Fe/H]~ -1.5 to [Fe/H]~ +0.5. The distribution is asymmetric, with a sharper cutoff on the high-metallicity side, and it is narrower than previously measured. A variation in the mean metallicity along the bulge minor axis is clearly between b=-4 deg and b=-6 deg ([Fe/H] decreasing by ~ 0.6 dex per kpc). The field at b=-12 deg is consistent with the presence of a gradient, but its quantification is complicated by the higher disk/bulge fraction in this field. Our findings support a scenario in which both infall and outflow were important during the bulge formation, and then suggest the presence of a radial gradient, which poses some challenges to the scenario in which the bulge would result solely from the vertical heating of the bar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا