ترغب بنشر مسار تعليمي؟ اضغط هنا

GASPS observations of Herbig Ae/Be stars with PACS/Herschel. The atomic and molecular content of their protoplanetary discs

250   0   0.0 ( 0 )
 نشر من قبل Gwendolyn Meeus
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed a sample of 20 representative Herbig Ae/Be stars and five A-type debris discs with PACS onboard of Herschel. The observations were done in spectroscopic mode, and cover far-IR lines of [OI], [CII], CO, CH+, H2O and OH. We have a [OI]63 micron detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. [OI]145 micron is only detected in 25%, CO J=18-17 in 45% (and less for higher J transitions) of the Herbig Ae/Be stars and for [CII] 157 micron, we often found spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. CH+, first seen in HD 100546, is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and stellar or disc parameters, such as stellar luminosity, UV and X-ray flux, accretion rate, PAH band strength, and flaring. We find that the stellar UV flux is the dominant excitation mechanism of [OI]63 micron, with the highest line fluxes found in those objects with a large amount of flaring and greatest PAH strength. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI]145 micron, CO J = 18-17 and [OI]6300 AA, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux of [OI]63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 micron, the stellar effective temperature and the Brgamma luminosity. (Abbreviated version)



قيم البحث

اقرأ أيضاً

Herbig Ae/Be objects are pre-main sequence stars surrounded by gas- and dust-rich circumstellar discs. These objects are in the throes of star and planet formation, and their characterisation informs us of the processes and outcomes of planet formati on processes around intermediate mass stars. Here we analyse the spectral energy distributions of disc host stars observed by the Herschel Open Time Key Programme `Gas in Protoplanetary Systems. We present Herschel/PACS far-infrared imaging observations of 22 Herbig Ae/Bes and 5 debris discs, combined with ancillary photometry spanning ultraviolet to sub-millimetre wavelengths. From these measurements we determine the diagnostics of disc evolution, along with the total excess, in three regimes spanning near-, mid-, and far-infrared wavelengths. Using appropriate statistical tests, these diagnostics are examined for correlations. We find that the far-infrared flux, where the disc becomes optically thin, is correlated with the millimetre flux, which provides a measure of the total dust mass. The ratio of far-infrared to sub-millimetre flux is found to be greater for targets with discs that are brighter at millimetre wavelengths and that have steeper sub-millimetre slopes. Furthermore, discs with flared geometry have, on average, larger excesses than flat geometry discs. Finally, we estimate the extents of these discs (or provide upper limits) from the observations.
Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential und erlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
75 - Jorick S. Vink 2002
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in c ircumstellar discs. A second outcome of our study is that the spectropolarimetric signatures for the lower mass Herbig Ae stars differ from those of the higher mass Herbig Be stars. Depolarisations across H_alpha are observed in the Herbig Be group, whereas line polarisations are common amongst the Herbig Ae stars in our sample. These line polarisation effects can be understood in terms of a compact H_alpha source that is polarised by a rotating disc-like configuration. The difference we detect between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung-Russell Diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. However, it is also possible that the compact polarised line component, present in the Herbig Ae stars, is masked in the Herbig Be stars due to their higher levels of H_alpha emission.
228 - Ryan L. Doering 2009
We report near-infrared photometric measurements of 35 Herbig Ae/Be candidate stars obtained with direct imaging and aperture photometry. Observations were made through the broadband J, H, and K filters, with each source imaged in at least one of the wavebands. We achieved subarcsecond angular resolution for all observations, providing us with the opportunity to search for close binary candidates and extended structure. The imaging revealed five newly identified binary candidates and one previously resolved T Tauri binary among the target sources with separations of <~2.5. Separate photometry is provided for each of the binary candidate stars. We detect one extended source that has been identified as a protoplanetary nebula. Comparing our magnitudes to past measurements yields significant differences for some sources, possibly indicating photometric variability. H-band finding charts for all of our sources are provided to aid follow-up high-resolution imaging.
Herbig Ae/Be objects, like their lower mass counterparts T Tauri stars, are seen to form a stable circumstellar disk which is initially gas-rich and could ultimately form a planetary system. We present Herschel SPIRE 460-1540 GHz spectra of five targ ets out of a sample of 13 young disk sources, showing line detections mainly due to warm CO gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا