ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of quantum criticality in the thermopower of Ba(Fe(1-x)Co(x))2As2

530   0   0.0 ( 0 )
 نشر من قبل Stevan Arsenijevi\\'c
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that the thermopower (S) can be used to probe the spin fluctuations (SFs) in proximity to the quantum critical point (QCP) in Fe-based superconductors. The sensitivity of S to the entropy of charge carriers allows us to observe an increase of S/T in Ba(Fe(1-x)Co(x))2As2 close to the spin-density-wave (SDW) QCP. This behavior is due to the coupling of low-energy conduction electrons to two-dimensional SFs, similar to heavy-fermion systems. The low-temperature enhancement of S/T in the Co substitution range 0.02 < x < 0.1 is bordered by two Lifshitz transitions, and it corresponds to the superconducting region, where a similarity between the electron and non-reconstructed hole pockets exists. The maximal S/T is observed in proximity to the commensurate-to-incommensurate SDW transition, for critical x_c ~ 0.05, close to the highest superconducting T_c. This analysis indicates that low-T thermopower is influenced by critical spin fluctuations which are important for the superconducting mechanism.



قيم البحث

اقرأ أيضاً

501 - F.L. Ning , K. Ahilan , T. Imai 2008
We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low freque ncy spin fluctuations. The optimum superconducting phase emerges at x_c~0.08 when the tendency toward spin ordering completely diminishes. Our findings point toward the presence of a quantum critical point near x_c between the SDW (spin density wave) and superconducting phases.
The {57}Fe-specific phonon density of states of Ba(Fe(1-x)Co(x))2As2 single crystals (x=0.0, 0.08) was measured at cryogenic temperatures and at high pressures with nuclear-resonant inelastic x-ray scattering. Measurements were conducted for two diff erent orientations of the single crystals, yielding the orientation-projected {57}Fe-phonon density of states (DOS) for phonon polarizations in-plane and out-of-plane with respect to the basal plane of the crystal structure. In the tetragonal phase at 300 K, a clear stiffening was observed upon doping with Co. Increasing pressure to 4 GPa caused a marked increase of phonon frequencies, with the doped material still stiffer than the parent compound. Upon cooling, both the doped and undoped samples showed a stiffening, and the parent compound exhibited a discontinuity across the magnetic and structural phase transition. These findings are generally compatible with the changes in volume of the system upon doping, increasing pressure, or increasing temperature, but an extra softening of high-energy modes occurs with increasing temperature. First-principles computations of the phonon DOS were performed and showed an overall agreement with the experimental results, but underestimate the Grueneisen parameter. This discrepancy is explained in terms of a magnetic Grueneisen parameter, causing an extra phonon stiffening as magnetism is suppressed under pressure.
We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commens urate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.
Neutron and x-ray diffraction studies of Ba(Fe{1-x}Mn{x})2As2 for low doping concentrations (x <= 0.176) reveal that at a critical concentration, 0.102 < x < 0.118, the tetragonal-to-orthorhombic transition abruptly disappears whereas magnetic orderi ng with a propagation vector of (1/2 1/2 1) persists. Among all of the iron arsenides this observation is unique to Mn-doping, and unexpected because all models for stripe-like antiferromagnetic order anticipate an attendant orthorhombic distortion due to magnetoelastic effects. We discuss these observations and their consequences in terms of previous studies of Ba(Fe{1-x}TM{x})2As2 compounds (TM = Transition Metal), and models for magnetic ordering in the iron arsenide compounds.
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no t lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging effective mass or scattering rate near optimal doping. Thus the present ARPES results indicate a continuous evolution of the quasiparticle interaction and therefore question previous quantum critical scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا