ﻻ يوجد ملخص باللغة العربية
We demonstrate that the thermopower (S) can be used to probe the spin fluctuations (SFs) in proximity to the quantum critical point (QCP) in Fe-based superconductors. The sensitivity of S to the entropy of charge carriers allows us to observe an increase of S/T in Ba(Fe(1-x)Co(x))2As2 close to the spin-density-wave (SDW) QCP. This behavior is due to the coupling of low-energy conduction electrons to two-dimensional SFs, similar to heavy-fermion systems. The low-temperature enhancement of S/T in the Co substitution range 0.02 < x < 0.1 is bordered by two Lifshitz transitions, and it corresponds to the superconducting region, where a similarity between the electron and non-reconstructed hole pockets exists. The maximal S/T is observed in proximity to the commensurate-to-incommensurate SDW transition, for critical x_c ~ 0.05, close to the highest superconducting T_c. This analysis indicates that low-T thermopower is influenced by critical spin fluctuations which are important for the superconducting mechanism.
We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low freque
The {57}Fe-specific phonon density of states of Ba(Fe(1-x)Co(x))2As2 single crystals (x=0.0, 0.08) was measured at cryogenic temperatures and at high pressures with nuclear-resonant inelastic x-ray scattering. Measurements were conducted for two diff
We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commens
Neutron and x-ray diffraction studies of Ba(Fe{1-x}Mn{x})2As2 for low doping concentrations (x <= 0.176) reveal that at a critical concentration, 0.102 < x < 0.118, the tetragonal-to-orthorhombic transition abruptly disappears whereas magnetic orderi
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no