ﻻ يوجد ملخص باللغة العربية
The breaking of time-reversal symmetry by ferromagnetism is predicted to yield profound changes to the electronic surface states of a topological insulator. Here, we report on a concerted set of structural, magnetic, electrical and spectroscopic measurements of MBS thin films wherein photoemission and x-ray magnetic circular dichroism studies have recently shown surface ferromagnetism in the temperature range 15 K $leq T leq 100$ K, accompanied by a suppressed density of surface states at the Dirac point. Secondary ion mass spectroscopy and scanning tunneling microscopy reveal an inhomogeneous distribution of Mn atoms, with a tendency to segregate towards the sample surface. Magnetometry and anisotropic magnetoresistance measurements are insensitive to the high temperature ferromagnetism seen in surface studies, revealing instead a low temperature ferromagnetic phase at $T lesssim 5$ K. The absence of both a magneto-optical Kerr effect and anomalous Hall effect suggests that this low temperature ferromagnetism is unlikely to be a homogeneous bulk phase but likely originates in nanoscale near-surface regions of the bulk where magnetic atoms segregate during sample growth. Although the samples are not ideal, with both bulk and surface contributions to electron transport, we measure a magnetoconductance whose behavior is qualitatively consistent with predictions that the opening of a gap in the Dirac spectrum drives quantum corrections to the conductance in topological insulators from the symplectic to the orthogonal class.
We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi$_2$Se$_3$ topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify t
Topological insulators (TI) are a new class of quantum materials with insulating bulk enclosed by topologically protected metallic boundaries. The surface states of three-dimensional TIs have spin helical Dirac structure, and are robust against time
Heterostructures between topological insulators (TI) and magnetic insulators represent a pathway to realize the quantum anomalous Hall effect (QAHE). Using density functional theory based systematic screening and investigation of thermodynamic, magne
The introduction of magnetic order on the surface of topological insulators in general breaks the two-dimensional character of topological surface state (TSS). Once the TSS disappears, it is improbable to restore the topological surface properties. I
We combine low energy muon spin rotation (LE-$mu$SR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)$_2$Te$_3$. We find that one