ترغب بنشر مسار تعليمي؟ اضغط هنا

Fresh Activity in Old Systems: Radio AGN in Fossil Groups of Galaxies

124   0   0.0 ( 0 )
 نشر من قبل Kelley M. Hess
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from SDSS Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L_1.4GHz > 10^23 W Hz^-1) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.



قيم البحث

اقرأ أيضاً

We review the formation and evolution of fossil groups and clusters from both the theoretical and the observational points of view. In the optical band, these systems are dominated by the light of the central galaxy. They were interpreted as old syst ems that had enough time to merge all the M* galaxies within the central one. During the last two decades many observational studies were performed to prove the old and relaxed state of fossil systems. The majority of these studies, that spans a wide range of topics including halos global scaling relations, dynamical substructures, stellar populations, and galaxy luminosity functions, seem to challenge this scenario. The general picture that can be obtained by reviewing all the observational works is that the fossil state could be transitional. Indeed, the formation of the large magnitude gap observed in fossil systems could be related to internal processes rather than an old formation.
Numerical simulations as well as optical and X-ray observations over the last few years have shown that poor groups of galaxies can evolve to what is called a fossil group. Dynamical friction as the driving process leads to the coalescence of individ ual galaxies in ordinary poor groups leaving behind nothing more than a central, massive elliptical galaxy supposed to contain the merger history of the whole group. Due to merging timescales for less-massive galaxies and gas cooling timescales of the X-ray intragroup medium exceeding a Hubble time, a surrounding faint-galaxy population having survived this galactic cannibalism as well as an extended X-ray halo similar to that found in ordinary groups, is expected. Recent studies suggest that fossil groups are very abundant and could be the progenitors of brightest cluster galaxies (BCGs) in the centers of rich galaxy clusters. However, only a few objects are known to the literature. This article aims to summarize the results of observational fossil group research over the last few years and presents ongoing work by the authors. Complementary to previous research, the SDSS and RASS surveys have been cross-correlated to identify new fossil structures yielding 34 newly detected fossil group candidates. Observations with ISIS at the 4.2m William Herschel Telescope on La Palma have been carried out to study the stellar populations of the central ellipticals of 6 fossil groups. In addition multi-object spectroscopy with VLTs VIMOS has been performed to study the shape of the OLF of one fossil system.
We present here a new spectral energy distribution (SED) fitting approach that we adopt to select radio-excess sources amongst distant star-forming galaxies in the GOODS-Herschel (North) field and to reveal the presence of hidden, highly obscured AGN . Through extensive SED analysis of 458 galaxies with radio 1.4 GHz and mid-IR 24 um detections using some of the deepest Chandra X-ray, Spitzer and Herschel infrared, and VLA radio data available to date, we have robustly identified a sample of 51 radio-excess AGN (~1300 deg^-2) out to redshift z~3. These radio-excess AGN have a significantly lower far-IR/radio ratio (q<1.68) than the typical relation observed for star-forming galaxies (q~2.2). We find that ~45% of these radio-excess sources have a dominant AGN component in the mid-IR band, while for the remainders the excess radio emission is the only indicator of AGN activity. The fraction of radio-excess AGN increases with X-ray luminosity reaching ~60% at Lx~10^44-10^45 erg/s, making these sources an important part of the total AGN population. However, almost half (24/51) of these radio-excess AGN are not detected in the deep Chandra X-ray data, suggesting that some of these sources might be heavily obscured. We also find that the specific star formation rates (sSFRs) of the radio-excess AGN are on average lower that those observed for X-ray selected AGN hosts, indicating that our sources are forming stars more slowly than typical AGN hosts, and possibly their star formation is progressively quenching.
(Abridged) Fossil systems are group- or cluster-sized objects whose luminosity is dominated by a very massive central galaxy. In the current cold dark matter scenario, these objects formed hierarchically at an early epoch of the Universe and then slo wly evolved until present day. That is the reason why they are called {it fossils}. We started an extensive observational program to characterize a sample of 34 fossil group candidates spanning a broad range of physical properties. Deep $r-$band images were taken for each candidate and optical spectroscopic observations were obtained for $sim$ 1200 galaxies. This new dataset was completed with SDSS DR7 archival data to obtain robust cluster membership and global properties of each fossil group candidate. For each system, we recomputed the magnitude gaps between the two brightest galaxies ($Delta m_{12}$) and the first and fourth ranked galaxies ($Delta m_{14}$) within 0.5 $R_{{rm 200}}$. We consider fossil systems those with $Delta m_{12} ge 2$ mag or $Delta m_{14} ge 2.5$ mag within the errors. We find that 15 candidates turned out to be fossil systems. Their observational properties agree with those of non-fossil systems. Both follow the same correlations, but fossils are always extreme cases. In particular, they host the brightest central galaxies and the fraction of total galaxy light enclosed in the central galaxy is larger in fossil than in non-fossil systems. Finally, we confirm the existence of genuine fossil clusters. Combining our results with others in the literature, we favor the merging scenario in which fossil systems formed due to mergers of $L^ast$ galaxies. The large magnitude gap is a consequence of the extreme merger ratio within fossil systems and therefore it is an evolutionary effect. Moreover, we suggest that at least one candidate in our sample could represent a transitional fossil stage.
We study the globular cluster (GC) systems in three representative fossil group galaxies: the nearest (NGC6482), the prototype (NGC1132) and the most massive known to date (ESO306-017). This is the first systematic study of GC systems in fossil group s. Using data obtained with the Hubble Space Telescope Advanced Camera for Surveys in the F475W and F850LP filters, we determine the GC color and magnitude distributions, surface number density profiles, and specific frequencies. In all three systems, the GC color distribution is bimodal, the GCs are spatially more extended than the starlight, and the red population is more concentrated than the blue. The specific frequencies seem to scale with the optical luminosities of the central galaxy and span a range similar to that of the normal bright elliptical galaxies in rich environments. We also analyze the galaxy surface brightness distributions to look for deviations from the best-fit Sersic profiles; we find evidence of recent dynamical interaction in all three fossil group galaxies. Using X-ray data from the literature, we find that luminosity and metallicity appear to correlate with the number of GCs and their mean color, respectively. Interestingly, although NGC6482 has the lowest mass and luminosity in our sample, its GC system has the reddest mean color, and the surrounding X-ray gas has the highest metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا