ﻻ يوجد ملخص باللغة العربية
We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from +-0.015% to +-0.03%.This micro-strain contributes to the linewidth observed in low-temperature photoluminescence spectra.
Gallium nitride nanowire and nanorod substrates with different morphology are prospective platforms allowing to control the local strain distribution in graphene films top of them, resulting in an induction of pseudomagnetic fields. Atomic force micr
Moderate amount of bending strains, ~3% are enough to induce the semiconductor-metal transition in Si nanowires of ~4nm diameter. The influence of bending on silicon nanowires of 1 nm to 4.3 nm diameter is investigated using molecular dynamics and qu
Conducting nanowires possess remarkable physical properties unattainable in bulk materials. However our understanding of their transport properties is limited by the difficulty of connecting them electrically. In this Letter we investigate phototrans
We investigate the strain state of ensembles of thin and nearly coalescence-free self-assembled GaN nanowires prepared by plasma-assisted molecular beam epitaxy on Ti/Al$_{2}$O$_{3}(0001)$ substrates. The shifts of Bragg peaks in high-resolution X-ra
Small-angle X-ray scattering from GaN nanowires grown on Si(111) is studied experimentally and modeled by means of Monte Carlo simulations. It is shown that the scattering intensity at large wave vectors does not follow Porods law $I(q)propto q^{-4}$