ترغب بنشر مسار تعليمي؟ اضغط هنا

The ionized gas in the central region of NGC 5253: 2D mapping of the physical and chemical properties

143   0   0.0 ( 0 )
 نشر من قبل Ana Monreal-Ibero
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ana Monreal-Ibero




اسأل ChatGPT حول البحث

ABRIDGED: NGC5253 was previously studied by our group with the aim to elucidate in detail the starburst interaction processes. Some open issues regarding the 2D structure of the main properties of the ionized gas remain to be addressed. Using IFS data obtained with FLAMES, we derived 2D maps for different tracers of electron density (n_e), electron temperature (T_e) and ionization degree. The maps for n_e as traced by several line ratios are compatible with a 3D stratified view of the nebula with the highest n_e in the innermost layers and a decrease of n_e outwards. To our knowledge, this is the first time that a T_e map based on [SII] lines for an extragalactic object is presented. The joint interpretation of our two T_e maps is consistent with a T_e structure in 3D with higher temperatures close to the main ionizing source surrounded by a colder and more diffuse component. The highest ionization degree is found at the peak of emission for the gas with relatively high ionization in the main GHIIR and lower ionization degree delineating the more extended diffuse component. Abundances for O, Ne and Ar are constant over the mapped area within <0.1 dex. The mean 12+log(O/H) is 8.26 while the relative abundances of log(N/O), log(Ne/O) and log(Ar/O) were sim-1.32, -0.65 and -2.33, respectively. There are two locations with enhanced N/O. The first (log(N/O)sim-0.95) is associated to two super star clusters. The second (log(N/O)sim-1.17), reported here for the first time, is associated to two moderately massive (2-4x10^4 M_sun) and relatively old (sim10 Myr) clusters. A comparison of the N/O map with those produced by strong line methods supports the use of N2O2 over N2S2 in the search for chemical inhomogeneities within a galaxy. The results on the localized nitrogen enhancement were used to compile and discuss the factors that affect the complex relationship between Wolf-Rayet stars and N/O excess.



قيم البحث

اقرأ أيضاً

462 - A. Monreal-Ibero 2010
ABRIDGED: A detailed 2D study of the central region of NGC5253 has been performed to characterize the stellar and ionized gas structure as well as the extinction distribution, physical properties and kinematics of the ionized gas in the central ~210p c x 130pc. We utilized optical integral field spectroscopy (IFS) data obtained with FLAMES. A detailed extinction map for the ionized gas in NGC5253 shows that the largest extinction is associated with the prominent Giant HII region. There is an offset of ~0.5 between the peak of the optical continuum and the extinction peak in agreement with findings in the infrared. We found that stars suffer less extinction than gas by a factor of 0.33. The [SII]l6717/[SII]l6731 map shows an electron density (N_e) gradient declining from the peak of emission in Ha (790cm^-3) outwards, while the argon line ratio traces areas with $N_e~4200 - 6200cm^(-3). The area polluted with extra nitrogen, as deduced from the excess [NII]/Ha, extends up to distances of 3.3 (~60pc) from the maximum pollution, which is offset by ~1.5 from the peak of continuum emission. Wolf-Rayet features are distributed in an irregular pattern over a larger area (~100pc x 100pc) and associated with young stellar clusters. We measured He^+ abundances over most of the field of view and values of He^++/H^+<~0.0005 in localized areas which do not coincide, in general, with the areas presenting W-R emission or extra nitrogen. The line profiles are complex. Up to three emission components were needed to reproduce them. One of them, associated with the giant HII region, presents supersonic widths and [NII] and [SII] emission lines shifted up to 40km/s with respect to Ha. Similarly, one of the narrow components presents offsets in the [NII] line of <~20km/s. This is the first time that maps with such velocity offsets for a starburst galaxy have been presented.
We present Integral Field Spectroscopy (IFS) of NGC 595, one of the most luminous HII regions in M33. This type of observations allows studying the variation of the principal emission-line ratios across the surface of the nebula. At each position of the field of view, we fit the main emission-line features of the spectrum within the spectral range 3650-6990A, and create maps of the principal emission-line ratios for the total surface of the region. The extinction map derived from the Balmer decrement and the absorbed H-alpha luminosity show good spatial correlation with the 24 micron emission from Spitzer. We also show here the capability of the IFS to study the existence of Wolf-Rayet (WR) stars, identifying the previously catalogued WR stars and detecting a new candidate towards the north of the region. The ionization structure of the region nicely follows the H-alpha shell morphology and is clearly related to the location of the central ionizing stars. The electron density distribution does not show strong variations within the HII region nor any trend with the H-alpha emission distribution. We study the behaviour within the HII region of several classical emission-line ratios proposed as metallicity calibrators: while [NII]/Ha and [NII]/[OIII] show important variations, the R23 index is substantially constant across the surface of the nebula, despite the strong variation of the ionization parameter as a function of the radial distance from the ionizing stars. These results show the reliability in using the R23 index to characterize the metallicity of HII regions even when only a fraction of the total area is covered by the observations.
137 - A. Monreal-Ibero 2011
(ABRIDGED) We present an analysis of NGC588 based on IFS data with PMAS, together with Spitzer images at 8 mi and 24 mi. The extinction distribution in the optical shows complex structure, with maxima correlating in position with those of the emissio n at 24 mi and 8 mi. The Ha luminosity absorbed by the dust within the GHIIR reproduces the structure observed in the 24 mi image, supporting the use of this band as a tracer of recent star formation. A velocity difference of ~50 km/s was measured between the areas of high and low surface brightness, which would be expected if NGC588 were an evolved GHIIR. Line ratios used in the BPT diagnostic diagrams show a larger range of variation in the low surface brightness areas. The ranges are ~0.5 to 1.2 dex for [NII]/Ha, 0.7 to 1.7 dex for [SII]/Ha, and 0.3 to 0.5 dex for [OIII]/Hb. Ratios corresponding to large ionization parameter (U) are found between the peak of the emission in Hb and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as ~0.8 dex. [OII]/Hb and [OIII]/[OII] yield similar local values for U and consistent with those expected from the integrated spectrum of an HII region ionized by a single star. The ratio [SII]/Ha departs significantly from the range predicted by this scenario, indicating the complex ionization structure in GHIIRs. There is a significant scatter in derivations of Z using strong line tracers as a function of position, caused by variations in the degree of ionization. The scatter is smaller for N2O3 which points to this tracer as a better Z tracer than N2. The comparison between integrated and local line ratio values indicates that measurements of the line ratios of GHIIR in galaxies at distances >~25 Mpc may be dominated by the ionization conditions in their low surface brightness areas.
The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5{mu}m line of S+3 at 3.8 kms-1 spectral and 1.4 spatial resolution, using the high resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s-1 and another of similiar strength and FWHM 94 km s-1 centered sim20 km s-1 to the blue. This suggests a model for the supernebula in which gas flows towards us out of the molecular cloud, as in a blister or champagne flow or in the HII regions modelled by Zhu (2006).
We present a multi-wavelength study (from X-ray to millimetre) of the nearby low-luminosity active galactic nucleus (LLAGN) NGC 7213. We combine the information from the different bands to characterize the source in terms of contribution from the AGN and the host-galaxy interstellar medium (ISM). This approach allows us to provide a coherent picture of the role of the AGN and its impact, if any, on the star formation and molecular gas properties of the host galaxy. We focused our study on archival ALMA Cycle 1 observations, where the CO(2-1) emission line has been used as a tracer of the molecular gas. Using the 3DBarolo code on ALMA data, we performed the modelling of the molecular gas kinematics traced by the CO(2-1) emission, finding a rotationally dominated pattern. The host-galaxy molecular gas mass was estimated from the integrated CO(2-1) emission line obtained with APEX data, assuming an $alpha_{CO}$ conversion factor. By using the ALMA data, we would have underestimated the gas masses by a factor $sim$3, given the filtering out of the large scale emission in interferometric observations. We also performed a complete X-ray spectral analysis on archival observations, revealing a relatively faint and unobscured AGN. The AGN results to be too faint to significantly affect the properties of the host-galaxy, such as star formation activity and molecular gas kinematics and distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا