ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis and minimization of bending losses in discrete quantum networks

66   0   0.0 ( 0 )
 نشر من قبل Dr. Georgios M. Nikolopoulos
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically the transfer of quantum information along bends in two-dimensional discrete lattices. Our analysis shows that the fidelity of the transfer decreases considerably, as a result of interactions in the neighbourhood of the bend. It is also demonstrated that such losses can be controlled efficiently by the inclusion of a defect. The present results are of relevance to various physical implementations of quantum networks, where geometric imperfections with finite spatial extent may arise as a result of bending, residual stress, etc.



قيم البحث

اقرأ أيضاً

The problem of devising learning strategies for discrete losses (e.g., multilabeling, ranking) is currently addressed with methods and theoretical analyses ad-hoc for each loss. In this paper we study a least-squares framework to systematically desig n learning algorithms for discrete losses, with quantitative characterizations in terms of statistical and computational complexity. In particular we improve existing results by providing explicit dependence on the number of labels for a wide class of losses and faster learning rates in conditions of low-noise. Theoretical results are complemented with experiments on real datasets, showing the effectiveness of the proposed general approach.
Discrete stochastic processes (DSP) are instrumental for modelling the dynamics of probabilistic systems and have a wide spectrum of applications in science and engineering. DSPs are usually analyzed via Monte Carlo methods since the number of realiz ations increases exponentially with the number of time steps, and importance sampling is often required to reduce the variance. We propose a quantum algorithm for calculating the characteristic function of a DSP, which completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps. The quantum algorithm takes all stochastic trajectories into account and hence eliminates the need of importance sampling. The algorithm can be further furnished with the quantum amplitude estimation algorithm to provide quadratic speed-up in sampling. Both of these strategies improve variance beyond classical capabilities. The quantum method can be combined with Fourier approximation to estimate an expectation value of any integrable function of the random variable. Applications in finance and correlated random walks are presented to exemplify the usefulness of our results. Proof-of-principle experiments are performed using the IBM quantum cloud platform.
Recent advances in quantum information science enabled the development of quantum communication network prototypes and created an opportunity to study full-stack quantum network architectures. This work develops SeQUeNCe, a comprehensive, customizabl e quantum network simulator. Our simulator consists of five modules: Hardware models, Entanglement Management protocols, Resource Management, Network Management, and Application. This framework is suitable for simulation of quantum network prototypes that capture the breadth of current and future hardware technologies and protocols. We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories. The simulation capabilities are illustrated in three use cases. We show the dependence of quantum network throughput on several key hardware parameters and study the impact of classical control message latency. We also investigate quantum memory usage efficiency in routers and demonstrate that redistributing memory according to anticipated load increases network capacity by 69.1% and throughput by 6.8%. We design SeQUeNCe to enable comparisons of alternative quantum network technologies, experiment planning, and validation and to aid with new protocol design. We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
Improving the performance of superconducting qubits and resonators generally results from a combination of materials and fabrication process improvements and design modifications that reduce device sensitivity to residual losses. One instance of this approach is to use trenching into the device substrate in combination with superconductors and dielectrics with low intrinsic losses to improve quality factors and coherence times. Here we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 $mu$m into the silicon substrate. Additionally, we measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance.
Quantum sensing and computation can be realized with superconducting microwave circuits. Qubits are engineered quantum systems of capacitors and inductors with non-linear Josephson junctions. They operate in the single-excitation quantum regime, phot ons of $27 mu$eV at 6.5 GHz. Quantum coherence is fundamentally limited by materials defects, in particular atomic-scale parasitic two-level systems (TLS) in amorphous dielectrics at circuit interfaces.[1] The electric fields driving oscillating charges in quantum circuits resonantly couple to TLS, producing phase noise and dissipation. We use coplanar niobium-on-silicon superconducting resonators to probe decoherence in quantum circuits. By selectively modifying interface dielectrics, we show that most TLS losses come from the silicon surface oxide, and most non-TLS losses are distributed throughout the niobium surface oxide. Through post-fabrication interface modification we reduced TLS losses by 85% and non-TLS losses by 72%, obtaining record single-photon resonator quality factors above 5 million and approaching a regime where non-TLS losses are dominant. [1]Muller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا