ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant plasmonic effects in periodic graphene antidot arrays

128   0   0.0 ( 0 )
 نشر من قبل Alexey Nikitin Dr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a graphene sheet perforated with micro- or nano-size antidots have prominent absorption resonances in the microwave and terahertz regions. These resonances correspond to surface plasmons of a continuous sheet perturbed by a lattice. They are excited in different diffraction orders, in contrast to cavity surface plasmon modes existing in disconnected graphene structures. The resonant absorption by the antidot array can essentially exceed the absorption by a continuous graphene sheet, even for high antidot diameter-to-period aspect ratios. Surface plasmon-enhanced absorption and suppressed transmission is more efficient for higher relaxation times of the charge carriers.



قيم البحث

اقرأ أيضاً

144 - T. Shen , Y.Q. Wu , M.A. Capano 2008
Epitaxial graphene films have been formed on the C-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. Nano-scale square antidot arrays have been fabricated on these graphene films. At low temperatures, magneto-conduc tance in these films exhibits pronounced Aharonov-Bohm oscillations with the period corresponding to magnetic flux quanta added to the area of a single antidot. At low fields, weak localization is observed and its visibility is enhanced by intravalley scattering on antidot edges. At high fields, we observe two distinctive minima in magnetoconductance which can be attributed to commensurability oscillations between classical cyclotron orbits and antidot array. All mesoscopic features, surviving up to 70 K, reveal the unique electronic properties of graphene.
Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: more resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.
Graphene samples can have a very high carrier mobility if influences from the substrate and the environment are minimized. Embedding a graphene sheet into a heterostructure with hexagonal boron nitride (hBN) on both sides was shown to be a particular ly efficient way of achieving a high bulk mobility. Nanopatterning graphene can add extra damage and drastically reduce sample mobility by edge disorder. Preparing etched graphene nanostructures on top of an hBN substrate instead of SiO2 is no remedy, as transport characteristics are still dominated by edge roughness. Here we show that etching fully encapsulated graphene on the nanoscale is more gentle and the high mobility can be preserved. To this end, we prepared graphene antidot lattices where we observe magnetotransport features stemming from ballistic transport. Due to the short lattice period in our samples we can also explore the boundary between the classical and the quantum transport regime.
The ability to localize and manipulate individual quasiparticles in mesoscopic structures is critical in experimental studies of quantum mechanics and thermodynamics, and in potential quantum information devices, e.g., for topological schemes of quan tum computation. In strong magnetic field, the quantum Hall edge modes can be confined around the circumference of a small antidot, forming discrete energy levels that have a unique ability to localize fractionally charged quasiparticles. Here, we demonstrate a Dirac fermion quantum Hall antidot in graphene in the integer quantum Hall regime, where charge transport characteristics can be adjusted through the coupling strength between the contacts and the antidot, from Coulomb blockade dominated tunneling under weak coupling to the effectively non-interacting resonant tunneling under strong coupling. Both regimes are characterized by single -flux and -charge oscillations in conductance persisting up to temperatures over 2 orders of magnitude higher than previous reports in other material systems. Such graphene quantum Hall antidots may serve as a promising platform for building and studying novel quantum circuits for quantum simulation and computation.
The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a $pi$-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random phase approximat ion. The effect of different kinds of disorder, such as geometric and chemical disorder, are included in our calculations. We highlight the main differences of GALs with respect to single-layer graphene (SLG). Our results show that, in addition to the well-understood bulk plasmon in doped samples, inter-band plasmons appear in GALs. We further show that the static screening properties of undoped and doped GALs are quantitatively different from SLG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا