ترغب بنشر مسار تعليمي؟ اضغط هنا

Age spread in Galactic star forming region W3 Main

307   0   0.0 ( 0 )
 نشر من قبل Arjan Bik
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Bik




اسأل ChatGPT حول البحث

We present near-infrared JHKs imaging as well as K-band multi-object spectroscopy of the massive stellar content of W3 Main using LUCI at the LBT. We confirm 13 OB stars by their absorption line spectra in W3 Main and spectral types between O5V and B4V have been found. Three massive Young Stellar Objects are identified by their emission line spectra and near-infrared excess. From our spectrophotometric analysis of the massive stars and the nature of their surrounding HII regions we derive the evolutionary sequence of W3 Main and we find an age spread of 2-3 Myr.



قيم البحث

اقرأ أيضاً

We observed three high-mass star-forming regions in the W3 high-mass star formation complex with the Submillimeter Array and IRAM 30 m telescope. These regions, i.e. W3 SMS1 (W3 IRS5), SMS2 (W3 IRS4) and SMS3, are in different evolutionary stages and are located within the same large-scale environment, which allows us to study rotation and outflows as well as chemical properties in an evolutionary sense. While we find multiple mm continuum sources toward all regions, these three sub-regions exhibit different dynamical and chemical properties, which indicates that they are in different evolutionary stages. Even within each subregion, massive cores of different ages are found, e.g. in SMS2, sub-sources from the most evolved UCHII region to potential starless cores exist within 30 000 AU of each other. Outflows and rotational structures are found in SMS1 and SMS2. Evidence for interactions between the molecular cloud and the HII regions is found in the 13CO channel maps, which may indicate triggered star formation.
104 - A. Bik 2011
We present near-infrared multi-object spectroscopy and JHKs imaging of the massive stellar content of the Galactic star-forming region W3 Main, obtained with LUCI at the Large Binocular Telescope. We confirm 15 OB stars in W3 Main and derive spectral types between O5V and B4V from their absorption line spectra. Three massive Young Stellar Objects are identified by their emission line spectra and near-infrared excess. The color-color diagram of the detected sources allows a detailed investigation of the slope of the near-infrared extinction law towards W3 Main. Analysis of the Hertzsprung Russell diagram suggests that the Nishiyama extinction law fits the stellar population of W3 Main best (E(J-H)/E(H-Ks) = 1.76 and R_(Ks) = 1.44). From our spectrophotometric analysis of the massive stars and the nature of their surrounding HII regions we derive the evolutionary sequence of W3 Main and we find evidence of an age spread of at least 2-3 Myr. While the most massive star (IRS2) is already evolved, indications for high-mass pre-main-sequence evolution is found for another star (IRS N1), deeply embedded in an ultra compact HII region, in line with the different evolutionary phases observed in the corresponding HII regions. We derive a stellar mass of W3 Main of (4 +- 1) 10^3 Msun, by extrapolating from the number of OB stars using a Kroupa IMF and correcting for our spectroscopic incompleteness. We have detected the photospheres of OB stars from the more evolved diffuse HII region to the much younger UCHII regions, suggesting that these stars have finished their formation and cleared away their circumstellar disks very fast. Only in the hyper-compact HII region (IRS5), the early type stars seem to be still surrounded by circumstellar material.
64 - C. Kramer 2003
We have used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. In combination with a map of singly ionized carbon (Howe et al. 1991), and FIR fine structure line data observed by ISO/LWS at the center position, these data sets allow to study in detail the physical structure of the photon dominated cloud interface regions (PDRs) where the occurance of carbon changes from CII to CI, and to CO.
We present the results of deep and high-resolution (FWHM ~ 0.35) JHK NIR observations with the Subaru telescope, to search for very low mass young stellar objects (YSOs) in the W3 Main star-forming region. The NIR survey covers an area of ~ 2.6 arcmi n^2 with 10-sigma limiting magnitude exceeding 20 mag in the JHK bands. The survey is sensitive enough to provide unprecedented details in W3 IRS 5 region and reveals a census of the stellar population down to objects below the hydrogen-burning limit. We construct JHK color-color (CC) and J-H/J and H-K/K color-magnitude (CM) diagrams to identify very low luminosity YSOs and to estimate their masses. Based on these CC and CM diagrams, we identified a rich population of embedded YSO candidates with infrared excesses (Class I and Class II), associated with the W3 Main region. A large number of red sources (H-K > 2) have also been detected around W3 Main. We argue that these red stars are most probably pre-main-sequence (PMS) stars with intrinsic color excesses. Based on the comparison between theoretical evolutionary models of very low-mass PMS objects with the observed CM diagram, we find there exists a substantial substellar population in the observed region. The mass function (MF) does not show the presence of cutoff and sharp turnover around the substellar limit, at least at the hydrogen-burning limit. Furthermore, the MF slope indicates that the number ratio of young brown dwarfs and hydrogen-burning stars in the W3 Main is probably higher than those in Trapezium and IC 348. The presence of mass segregation, in the sense that relatively massive YSOs lie near the cluster center, is seen. The estimated dynamical evolution time indicates that the observed mass segregation in the W3 Main may be the imprint of the star formation process.
In very young clusters, stellar age distribution is the empirical proof of the duration of star formation (SF) and of the physical mechanisms involved in the process. We derived accurate stellar ages for the cluster NGC6530, associated with the Lagoo n Nebula to infer its SF history. We use the Gaia-ESO survey observations and Gaia DR2 data, to derive cluster membership and fundamental stellar parameters. We identified 652 confirmed and 9 probable members. The reddening inferred for members and non-members allows us to distinguish MS stars and giants, in agreement with the distances inferred from Gaia DR2 data. The foreground and background stars show a spatial pattern that traces the 3D structure of the nebular dust component. We derive stellar ages for 382 confirmed cluster members and we find that the gravity-sensitive gamma index distribution for M stars is correlated with stellar age. For all members with Teff<5500 K, the mean logarithmic age is 5.84 (units of years) with a dispersion of 0.36 dex. The age distribution of stars with accretion and/or disk (CTTSe) is similar to that of stars without accretion and without disk (WTTSp). We interpret this dispersion as evidence of a real age spread since the total uncertainties on age determinations, derived from Monte Carlo simulations, are significantly smaller than the observed spread. This conclusion is supported by the evidence of a decreasing of the gravity-sensitive gamma index as a function of stellar ages. The presence of the age spread is also supported by the spatial distribution and the kinematics of old and young members. In particular, members with accretion and/or disk, formed in the last 1 Myr, show evidence of subclustering around the cluster center, in the Hourglass Nebula and in the M8-E region, suggesting a possible triggering of star formation events by the O-type star ionization fronts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا