ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust extinction from Balmer decrements of star-forming galaxies at 0.75<z<1.5 with HST/WFC3 spectroscopy from the WISP survey

152   0   0.0 ( 0 )
 نشر من قبل Alberto Dom\\'inguez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectroscopic observations of Halpha and Hbeta emission lines of 128 star-forming galaxies in the redshift range 0.75<z<1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel (WISP) survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (Halpha/Hbeta). We present dust extinction as a function of Halpha luminosity (down to 3 x 10^{41} erg/s), galaxy stellar mass (reaching 4 x 10^{8} Msun), and rest-frame Halpha equivalent width. The faintest galaxies are two times fainter in Halpha luminosity than galaxies previously studied at z~1.5. An evolution is observed where galaxies of the same Halpha luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower Halpha luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [OIII]5007/Halpha flux ratio as a function of luminosity where galaxies with L_{Halpha}<5 x 10^{41} erg/s are brighter in [OIII]5007 than Halpha. This trend is evident even after extinction correction, suggesting that the increased [OIII]5007/Halpha ratio in low luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.



قيم البحث

اقرأ أيضاً

131 - A.G. Bedregal 2013
We combine Hubble Space Telescope (HST) G102 & G141 NIR grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR and Spitzer/IRAC[3.6mu m] photometry to assemble a sample of massive (log(M_star/M_sun) ~ 11) and quenched galaxies at z~1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local Universe, z~1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find their SEDs are well fitted with exponentially decreasing SFHs, and short star-formation time-scales (tau<100Myr). Quenched galaxies also show a wide distribution in ages, between 1-4Gyr. In the (u-r)_0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z~1.5 red-sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies ON the RS have older median ages (3.1Gyr) than the quenched galaxies OFF the RS (1.5Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies OFF the RS. We derive the upper limit on the fraction of massive galaxies ON the RS at z~1.5 to be <43%. We speculate that the young quenched galaxies OFF the RS are in a transition phase between vigorous star formation at z>2 and the z~1.5 RS. According to their estimated ages, the time required for quenched galaxies OFF the RS to join their counterparts ON the z~1.5 RS is of the order of ~1Gyr.
Multi-wavelength, optical to IR/sub-mm observations of 5 strongly lensed galaxies identified by the Herschel Lensing Survey, plus two well-studied lensed galaxies, MS1512-cB58 and the Cosmic Eye, for which we also provide updated Herschel measurement s, are used to determine the physical properties of z~1.5-3 star-forming galaxies close to or below the detection limits of blank fields. We constrain their stellar and dust content, determine star formation rates and histories, dust attenuation and extinction laws, and other related properties. We perform SED-fits of the full photometry of each object as well for the optical and infrared parts separately, exploring various parameters, including nebular emission. The IR observations and emission line measurements, where available, are used a posteriori constraints on the models. Besides the various stellar population models we explore, we use the observed IR/UV ratio to estimate the extinction and create energy conserving models, that constrain most accurately the physical properties of our sources. Our sample has a median lensing-corrected IR luminosity ~ 3e11 Lsun, stellar masses between 2e9 and 2e11 Msun, and IR/UV luminosity ratios spanning a wide range. The dust masses of our galaxies are in the range 2 to 17e7 Msun, extending previous studies at the same redshift down to lower masses. We do not find any particular trend of the dust temperature Tdust with IR luminosity, suggesting an overall warmer dust regime at our redshift regardless of luminosity. Lensing enables us to study the detailed physical properties of individual IR-detected z~1.5-3 galaxies up to a factor ~10 fainter than achieved with deep blank field observations. We demonstrate that multi-wavelength observations combining stellar and dust emission can constrain star formation histories and extinction laws of star-forming galaxies.
We derive average radial gradients in the dust attenuation towards HII regions in 609 galaxies at z~1.4, using measurements of the Balmer decrement out to r~3kpc. The Balmer decrements are derived from spatially resolved maps of Halpha and Hbeta emis sion from the 3D-HST survey. We find that with increasing stellar mass (M) both the normalization and strength of the gradient in dust attenuation increases. Galaxies with a mean mass of <log(M)> = 9.2Msun have little dust attenuation at all radii, whereas galaxies with <log(M)>= 10.2Msun have dust attenuation toward Halpha A(Halpha)~2mag in their central regions. We parameterize this as A(Halpha) = b + c log(r), with b = 0.9 + 1.0 log(M10), c = -1.9 - 2.2 log(M10), r in kpc, and M10 the stellar mass in units of 10^10Msun. This expression can be used to correct spatially resolved measurements of Halpha to radial distributions of star formation. When applied to our data, we find that the star formation rates in the central r<1kpc of galaxies in the highest mass bin are ~ 6 Msun/yr, six times higher than before correction and approximately half of the total star formation rate of these galaxies. If this high central star formation rate is maintained for several Gyr, a large fraction of the stars in present-day bulges likely formed in-situ.
The addition of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) has led to a dramatic increase in our ability to study the z>6 Universe. The increase in the near-infrared (NIR) sensitivity of WFC3 over previous instruments has enabled us to reach apparent magnitudes approaching 29 (AB). This allows us to probe the rest-frame ultraviolet (UV) continuum, redshifted into the NIR at $z>6$. Taking advantage of the large optical depths at this redshift, resulting in the Lyman-alpha break, we use a combination of WFC3 imaging and pre-existing Advanced Camera for Surveys (ACS) imaging to search for z approx 7 over 4 fields. Our analysis reveals 29 new z approx 7 star forming galaxy candidates in addition to 16 pre-existing candidates already discovered in these fields. The improved statistics from our doubling of the robust sample of z-drop candidates confirms the previously observed evolution of the bright end of the luminosity function.
We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at $1.4<z<1.7$. The high-resolution m ode is implemented to detect H$alpha$ in emission between $1.6{rm -}1.8 mathrm{mu m}$ with $f_{rm Halpha}gtrsim4times10^{-17}$ erg cm$^{-2}$ s$^{-1}$. Here, we specifically focus on 271 sBzK-selected galaxies that yield a H$alpha$ detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further $J$-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction ($0.6lesssim A_mathrm{Halpha} lesssim 2.5$) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission hbox{$E_mathrm{star}(B-V)/E_mathrm{neb}(B-V)$} is 0.7--0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an H$alpha$-based main sequence with a slope ($0.81pm0.04$) and normalization similar to previous studies at these redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا