ﻻ يوجد ملخص باللغة العربية
A recursion technique of obtaining the asymptotical expansions for the bound-state energy eigenvalues of the radial Schrodinger equation with a position-dependent mass is presented. As an example of the application we calculate the energy eigenvalues for the Coulomb potential in the presence of position-dependent mass and we derive the inequalities regulating the shifts of the energy levels from their constant-mass positions.
Using a recently developed technique to solve Schrodinger equation for constant mass, we studied the regime in which mass varies with position i.e position dependent mass Schrodinger equation(PDMSE). We obtained an analytical solution for the PDMSE a
The following comparison rules for the discrete spectrum of the position-dependent mass (PDM) Schroedinger equation are established. (i) If a constant mass $m_0$ and a PDM $m(x)$ are ordered everywhere, that is either $m_0leq m(x)$ or $m_0geq m(x)$,
The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues and the corresponding eigenfunctions are computed. Results are also given for the constant mass case.
A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well as a unique commutation rel
We study the $(1+1)$ dimensional generalized Dirac oscillator with a position-dependent mass. In particular, bound states with zero energy as well as non zero energy have been obtained for suitable choices of the mass function/oscillator interaction.