ﻻ يوجد ملخص باللغة العربية
A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters. It is known that some of these stars are runaways and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements or whose low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction with the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.
This paper presents an extensive overview of known and proposed RR Lyrae stars in binaries. The aim is to revise and extend the list with new Galactic field systems. We utilized maxima timings for eleven RRab type stars with suspicious behaviour from
This is the third paper in a series aiming at the analysis of nitrogen abundances in O-type stars, to enable further constraints on the early evolution of massive stars. We provide first theoretical predictions for the NIV4058/NIII4640 emission line
We present deep VLT and HST observations of the nearest examples of calcium-rich gap transients -- rapidly evolving transient events, with a luminosity intermediate between novae and supernovae. These sources are frequently found at large galactocent
To investigate statistically whether magnetic fields in massive stars are ubiquitous or appear in stars with specific spectral classification, certain ages, or in a special environment, we acquired 41 new spectropolarimetric observations for 36 stars
The origin of the arc-shaped Sh2-296 nebula is still unclear. Mainly due to its morphology, the nebula has been suggested to be a 0.5 Myr-old supernova remnant (SNR) that could be inducing star formation in the CMa OB1 association. We aim to show, fo