ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry results for the $p(x)$-Laplacian equation

152   0   0.0 ( 0 )
 نشر من قبل Marco Squassina
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Dirichlet problem for the nonlinear $p(x)$-Laplacian equation. For axially symmetric domains we prove that, under suitable assumptions, there exist Mountain-pass solutions which exhibit partial symmetry. Furthermore, we show that Semi-stable or non-degenerate smooth solutions need to be radially symmetric in the ball.



قيم البحث

اقرأ أيضاً

Given $n geq 2$ and $1<p<n$, we consider the critical $p$-Laplacian equation $Delta_p u + u^{p^*-1}=0$, which corresponds to critical points of the Sobolev inequality. Exploiting the moving planes method, it has been recently shown that positive solu tions in the whole space are classified. Since the moving plane method strongly relies on the symmetries of the equation and the domain, in this paper we provide a new approach to this Liouville-type problem that allows us to give a complete classification of solutions in an anisotropic setting. More precisely, we characterize solutions to the critical $p$-Laplacian equation induced by a smooth norm inside any convex cone. In addition, using optimal transport, we prove a general class of (weighted) anisotropic Sobolev inequalities inside arbitrary convex cones.
In this paper we obtain symmetry and monotonicity results for positive solutions to some $p$-Laplacian cooperative systems in bounded domains involving first order terms and under zero Dirichlet boundary condition.
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in convenient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.
We obtain asymptotic estimates for the eigenvalues of the p(x)-Laplacian defined consistently with a homogeneous notion of first eigenvalue recently introduced in the literature.
We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset mathbb{R}^N$. By means of topological argumen ts, we show how symmetries of $Omega$ help to construct subsets of $W_0^{1,p}(Omega)$ with suitably high Krasnoselskiu{i} genus. In particular, if $Omega$ is a ball $B subset mathbb{R}^N$, we obtain the following chain of inequalities: $$ lambda_2(p;B) leq dots leq lambda_{N+1}(p;B) leq lambda_ominus(p;B). $$ Here $lambda_i(p;B)$ are variational eigenvalues of the $p$-Laplacian on $B$, and $lambda_ominus(p;B)$ is the eigenvalue which has an associated eigenfunction whose nodal set is an equatorial section of $B$. If $lambda_2(p;B)=lambda_ominus(p;B)$, as it holds true for $p=2$, the result implies that the multiplicity of the second eigenvalue is at least $N$. In the case $N=2$, we can deduce that any third eigenfunction of the $p$-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases $p=1$, $p=infty$ are also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا