ﻻ يوجد ملخص باللغة العربية
We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280 (~5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying HI disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.
We present the results of integral-field spectroscopic observations of the two disk galaxies NGC 3593 and NGC 4550 obtained with VIMOS/VLT. Both galaxies are known to host 2 counter-rotating stellar disks, with the ionized gas co-rotating with one of
We present stellar age profiles for 64 Virgo cluster disk galaxies whose analysis poses a challenge for current galaxy formation models. Our results can be summarized as follows: first, and contrary to observations of field galaxies, these cluster ga
We use deep (~27.5 mag V-band point-source limiting magnitude) V- and U-band LBT imaging to study the outer disk (beyond the optical radius R_25) of the non-interacting, face-on spiral galaxy NGC 3184 (D = 11.1 Mpc; R_25 = 11.1 kpc) and find that thi
We present optical emission-line spectra for outlying HII regions in the extended neutral gas disk surrounding the blue compact dwarf galaxy NGC 2915. Using a combination of strong-line R23 and direct oxygen abundance measurements, we report a flat,
Protoplanetary disks in dense, massive star-forming regions are strongly affected by their environment. How this environmental impact changes over time is an important constraint on disk evolution and external photoevaporation models. We characterize