ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance of many body effects in the kernel of hemoglobin for ligand binding

236   0   0.0 ( 0 )
 نشر من قبل David D. O'Regan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hunds exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hunds coupling reduces, by a factor of five, the strong imbalance in the binding energies of heme with CO and O_2 ligands.

قيم البحث

اقرأ أيضاً

We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently availab le, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory (DMFT). This combination of methods explicitly accounts for dynamical and multi-reference quantum physics, such as valence and spin fluctuations, of the 3d electrons, whilst treating a significant proportion of the protein (more than 1000 atoms) with density functional theory. The computed electronic structure of the myoglobin complexes and the nature of the Fe-O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of many body-effects induced by the Hunds coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin.
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas ic model considered by Stoner, is suppressed due to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition lowering the density is precluded by the formation of the Wigner crystal.
The importance of many-body effects on electronic and magnetic properties and stability of different structural phases was studied in novel iron oxide - Fe$_2$O. It was found that while Hubbard repulsion hardly affects the electronic spectrum of this material ($m^*/m sim 1.2$), but it strongly changes its phase diagram shifting critical pressures of structural transitions to much lower values. Moreover, one of the previously obtained in the density functional theory (DFT) structures (P$bar 3$m1) becomes energetically unstable if many-body effects are taken into consideration. It is shown that this is an account of magnetic moment fluctuations in the DFT+DMFT approach, which strongly contributes to modification of the phase diagram of Fe$_2$O.
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work we demonstrate the importance of collective van der Waals d ispersion effects beyond the pairwise approximation for organic--inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Phys. Rev. Lett. 108, 236402 (2012); J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid (PTCDA), and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate--surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.
Including on-site electronic interactions described by the multi-orbital Hubbard model we study the correlation effects in the electronic structure of bulk palladium. We use a combined density functional and dynamical mean field theory, LDA+DMFT, bas ed on the fluctuation exchange approximation. The agreement between the experimentally determined and the theoretical lattice constant and bulk modulus is improved when correlation effects are included. It is found that correlations modify the Fermi surface around the neck at the $L$-point while the Fermi surface tube structures show little correlation effects. At the same time we discuss the possibility of satellite formation in the high energy binding region. Spectral functions obtained within the LDA+DMFT and $GW$ methods are compared to discuss non-local correlation effects. For relatively weak interaction strength of the local Coulomb and exchange parameters spectra from LDA+DMFT shows no major difference in comparison to $GW$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا