ﻻ يوجد ملخص باللغة العربية
Magnetic order in the thermally quenched photomagnetic Prussian blue analogue coordination polymer K0.27Co[Fe(CN)6]0.73[D2O6]0.27 1.42D2O has been studied down to 4 K with unpolarized and polarized neutron powder diffraction as a function of applied magnetic field. Analysis of the data allows the onsite coherent magnetization of the Co and Fe spins to be established. Specifically, magnetic fields of 1 T and 4 T induce moments parallel to the applied field, and the sample behaves as a ferromagnet with a wandering axis.
This paper summarizes 0 GPa to 0.6 GPa neutron diffraction measurements of a nickel hexacyanochromate coordination polymer (NiCrPB) that has the face-centered cubic, Prussian blue structure. Deuterated powders of NiCrPB contain ~100 nm sided cubic pa
Many Prussian Blue Analogues are known to show a thermally induced phase transition close to room temperature and a reversible, photo-induced phase transition at low temperatures. This work reports on magnetic measurements, X-ray photoemission and Ra
We present an ESR study at excitation frequencies of 9.4 GHz and 222.4 GHz of powders and single crystals of a Prussian Blue analogue (PBA), RbMn[Fe(CN)6]*H2O in which Fe and Mn undergoes a charge transfer transition between 175 and 300 K. The ESR of
Cubic heterostructured (BA) particles of Prussian blue analogues, composed of a shell of ferromagnetic K_{0.3}Ni[Cr(CN)_6]_{0.8} cdot 1.3H_2O (A), Tc ~ 70 K, surrounding a bulk core of photoactive ferrimagnetic Rb_{0.4}Co[Fe(CN)_6]_{0.8} cdot 1.2H_2O
Prussian blue analogues (PBAs) are a broad and important family of microporous inorganic solids, famous for their gas storage, metal-ion immobilisation, proton conduction, and stimuli-dependent magnetic, electronic and optical properties. The family