ﻻ يوجد ملخص باللغة العربية
The presence of new matter fields charged under the Standard Model gauge group at intermediate scales below the Grand Unification scale modifies the renormalization group evolution of the gauge couplings. This can in turn significantly change the running of the Minimal Supersymmetric Standard Model parameters, in particular the gaugino and the scalar masses. In the absence of new large Yukawa couplings we can parameterise all the intermediate scale models in terms of only two parameters controlling the size of the unified gauge coupling. As a consequence of the modified running, the low energy spectrum can be strongly affected with interesting phenomenological consequences. In particular, we show that scalar over gaugino mass ratios tend to increase and the regions of the parameter space with neutralino Dark Matter compatible with cosmological observations get drastically modified. Moreover, we discuss some observables that can be used to test the intermediate scale physics at the LHC in a wide class of models.
The searches for heavy Higgs bosons and supersymmetric (SUSY) particles at the LHC have left the minimal supersymmetric standard model (MSSM) with an unusual spectrum of SUSY particles, namely, all squarks are beyond a few TeV while the Higgs bosons
In the $SO(5) times U(1)$ gauge-Higgs unification in the Randall-Sundrum (RS) warped space the Higgs boson naturally becomes stable. The model is consistent with the current collider signatures only for a large warp factor $z_L > 10^{15}$ of the RS s
We review our recent studies on the effects of CP-violating supersymmetric (SUSY) parameters on the phenomenology of neutralinos, charginos and third generation squarks. The CP-even branching ratios of the squarks show a pronounced dependence on the
We perform an extensive study of FCNC and CP Violation within Supersymmetric (SUSY) theories with particular emphasis put on processes governed by b->s transitions and of their correlations with processes governed by b->d transitions, s->d transition
Coherent analyses at future LHC and LC experiments can be used to explore the breaking mechanism of supersymmetry and to reconstruct the fundamental theory at high energies, in particular at the grand unification scale. This will be exemplified for minimal supergravity.