ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise response functions in all-electron methods: Application to the optimized-effective-potential approach

63   0   0.0 ( 0 )
 نشر من قبل Markus Betzinger
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optimized-effective-potential (OEP) method is a special technique to construct local Kohn-Sham potentials from general orbital-dependent energy functionals. In a recent publication [M. Betzinger, C. Friedrich, S. Blugel, A. Gorling, Phys. Rev. B 83, 045105 (2011)] we showed that uneconomically large basis sets were required to obtain a smooth local potential without spurious oscillations within the full-potential linearized augmented-plane-wave method (FLAPW). This could be attributed to the slow convergence behavior of the density response function. In this paper, we derive an incomplete-basis-set correction for the response, which consists of two terms: (1) a correction that is formally similar to the Pulay correction in atomic-force calculations and (2) a numerically more important basis response term originating from the potential dependence of the basis functions. The basis response term is constructed from the solutions of radial Sternheimer equations in the muffin-tin spheres. With these corrections the local potential converges at much smaller basis sets, at much fewer states, and its construction becomes numerically very stable. We analyze the improvements for rock-salt ScN and report results for BN, AlN, and GaN, as well as the perovskites CaTiO3, SrTiO3, and BaTiO3. The incomplete-basis-set correction can be applied to other electronic-structure methods with potential-dependent basis sets and opens the perspective to investigate a broad spectrum of problems in theoretical solid-state physics that involve response functions.

قيم البحث

اقرأ أيضاً

29 - Samir Lounis 2020
Various multi-spin magnetic exchange interactions (MEI) of chiral nature have been recently unveiled. Owing to their potential impact on the realisation of twisted spin-textures, their implication in spintronics or quantum computing is very promising . Here, I address the long-range behavior of multi-spin MEI on the basis of a multiple-scattering formalism implementable in Green functions based methods. I consider the impact of spin-orbit coupling (SOC) as described in the one- (1D) and two-dimensional (2D) Rashba model, from which the analytical forms of the four- and six-spin interactions are extracted and compared to the bilinear isotropic, anisotropic and Dzyaloshinskii-Moriya interactions (DMI). Similarly to the DMI between two sites $i$ and $j$, there is a four-spin chiral vector perpendicular to the bond connecting the two sites. The oscillatory behavior of the MEI and their decay as function of interatomic distances are analysed and quantified for the Rashba surfaces states characterizing Au surfaces. The interplay of beating effects and strength of SOC gives rise to a wide parameter space where chiral MEI are more prominent than the isotropic ones. The multi-spin interactions for a plaquette of $N$ magnetic moments decay like ${q_F^{N-d} P^{frac{1}{2}(d-1)}L}^{-1}$ simplifying to ${q_F^{N-d} R^{left[1+frac{N}{2}(d-1)right]}N}^{-1}$ for equidistant atoms, where $d$ is the dimension of the mediating electrons, $q_F$ the Fermi wave vector, $L$ the perimeter of the plaquette while $P$ is the product of interatomic distances. This recovers the behavior of the bilinear MEI, ${q_F^{2-d} R^{d}}^{-1}$, and shows that increasing the perimeter of the plaquette weakens the MEI. More important, the power-law pertaining to the distance-dependent 1D MEI is insensitive to the number of atoms in the plaquette in contrast to the linear dependence associated with the 2D MEI.
68 - B. Arnaud , M. Alouani 1999
We have implemented the so called GW approximation (GWA) based on an all-electron full-potential Projector Augmented Wave (PAW) method. For the screening of the Coulomb interaction W we tested three different plasmon-pole dielectric function models, and showed that the accuracy of the quasiparticle energies is not sensitive to the the details of these models. We have then applied this new method to compute the quasiparticle band structure of some small, medium and large-band-gap semiconductors: Si, GaAs, AlAs, InP, SiMg$_2$, C and (insulator) LiCl. A special attention was devoted to the convergence of the self-energy with respect to both the {bf k}-points in the Brillouin zone and to the number of reciprocal space $bf G$-vectors. The most important result is that although the all-electron GWA improves considerably the quasiparticle band structure of semiconductors, it does not always provide the correct energy band gaps as originally claimed by GWA pseudopotential type of calculations. We argue that the decoupling between the valence and core electrons is a problem, and is some what hidden in a pseudopotential type of approach.
A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pol e model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illustrate the novelty of the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.
Quantum Monte Carlo simulations of interacting electrons in solids often use Slater-Jastrow trial wave functions with Jastrow factors containing one- and two-body terms. In uniform systems the long-range behavior of the two-body term may be deduced f rom the random-phase approximation (RPA) of Bohm and Pines. Here we generalize the RPA to nonuniform systems. This gives the long-range behavior of the inhomogeneous two-body correlation term and provides an accurate analytic expression for the one-body term. It also explains why Slater-Jastrow trial wave functions incorporating determinants of Hartree-Fock or density-functional orbitals are close to optimal even in the presence of an RPA Jastrow factor. After adjusting the inhomogeneous RPA Jastrow factor to incorporate the known short-range behavior, we test it using variational Monte Carlo calculations. We find that the most important aspect of the two-body term is the short-range behavior due to electron-electron scattering, although the long-range behavior described by the RPA should become more important at high densities.
The method based on fast Fourier transforms proposed by G. Roman-Perez and J. M. Soler [Phys. Rev. Lett. 103, 096102 (2009)], which allows for a computationally fast implementation of the nonlocal van der Waals (vdW) functionals, has significantly co ntributed to making the vdW functionals popular in solid-state physics. However, the Roman-Perez-Soler method relies on a plane-wave expansion of the electron density; therefore it can not be applied readily to all-electron densities for which an unaffordable number of plane waves would be required for an accurate expansion. In this work, we present the results for the lattice constant and binding energy of solids that were obtained by applying a smoothing procedure to the all-electron density calculated with the linearized augmented plane-wave method. The smoothing procedure has the advantages of being very simple to implement, basis-set independent, and allowing the calculation of the potential. It is also shown that the results agree very well with those from the literature that were obtained with the projector augmented wave method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا