ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of the large-deformation high spin bands in selected A=158-168 nuclei

42   0   0.0 ( 0 )
 نشر من قبل Azam Kardan
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The high-spin rotational bands in 168Hf and the triaxial bands in Lu nuclei are analyzed using the configuration-constrained Cranked Nilsson-Strutinsky (CNS) model. Special attention is given to the up-sloping extruder orbitals. The relative alignment between the bands which appear to correspond to triaxial shape is also considered, including the yrast ultra-high spin band in 158Er. This comparison suggests that the latter band is formed from rotation around the intermediate axis. In addition, the standard approximations of the CNS approach are investigated, indicating that the errors which are introduced by the neglect of off-shell matrix elements and the cut-off at 9 oscillator shells (N_{max}=8) are essentially negligible compared to other uncertainties. On the other hand, the full inclusion of the hexadecapole degree of freedom is more significant; for example it leads to a decrease of the total energy of ~ 500 keV in the TSD region of 168Hf.

قيم البحث

اقرأ أيضاً

The recently observed two and four-quasiparticle high-spin rotational bands in the odd-odd nuclei $^{166, 168, 170, 172}$Re are investigated using the cranked shell model with pairing correlations treated by a particle-number conserving method. The e xperimental moments of inertia and alignments can be reproduced well by the present calculation if appropriate bandhead spins and configurations are assigned for these bands, which in turn confirms their spin and configuration assignments. It is found that the bandhead spins of those two rotational bands observed in $^{166}$Re~[Li {it et al.}, Phys. Rev. C 92 014310 (2015)] should be both increased by $2hbar$ to get in consistent with the systematics of the experimental and calculated moments of inertia for the same configurations in $^{168, 170, 172}$Re. The variations of the backbendings/upbendings with increasing neutron number in these nuclei are investigated. The level crossing mechanism is well understood by analysing the variations of the occupation probabilities of the single-particle states close to the Fermi surface and their contributions to the angular momentum alignment with rotational frequency. In addition, the influence of the deformation driving effects of the proton $1/2^-[541]$ ($h_{9/2}$) orbtial on the level crossing in $^{172}$Re is also discussed.
With the aim to get a general understanding of rotational bands in the deformed rare-earth region or in deformed nuclei in general, the observed normal-deformed rotational structures in $^{167}$Lu are interpreted within the unpaired and paired cranke d Nilsson-Strutinsky formalisms, CNS and CNSB. Particular attention is devoted to the band crossings. For this nucleus with the Fermi surface high up in the $h_{11/2}$ shell, we conclude that except for the paired AB and BC crossings in configurations with an even and odd number of $i_{13/2}$ neutrons, respectively, the observed band crossings can be understood within the unpaired formalism. Especially, it means that above the AB and BC crossings, the evolution with spin is described as a gradual alignment of the spin vectors of the particles outside closed shells. Consequently, the configurations can be characterized by the number of particles occupying open $j$-shells or groups of $j$-shells. In the present study, we revise the interpretation of some experimental bands and also the nature of the crossings while some previous configuration assignments are confirmed.
The interpretation of the recently reported low-lying excited bands in $gamma$-soft odd-mass nuclei as wobbling bands is examined in terms of the interacting boson-fermion model that is based on the universal nuclear energy density functional. The pr edicted mixing ratios of the $Delta{I}=1$ electric quadrupole ($E2$) to magnetic dipole ($M1$) transition rates between yrast bands and those yrare bands previously interpreted as wobbling bands in $^{135}$Pr, $^{133}$La, $^{127}$Xe, and $^{105}$Pd nuclei are consistently smaller in magnitude than the experimental values on which the wobbling interpretation is based. These calculated mixing ratios indicate the predominant $M1$ character of the transitions from the yrare bands under consideration to the yrast bands, being in agreement with the new experimental data, which involve both the angular distribution and linear polarization measurements. The earlier wobbling assignments are severely questioned.
The experimentally observed $Delta I = 1$ doublet bands in some odd-odd nuclei are analyzed within the orthosymplectic extension of the Interacting Vector Boson Model (IVBM). A new, purely collective interpretation of these bands is given on the basi s of the obtained boson-fermion dynamical symmetry of the model. It is illustrated by its application to three odd-odd nuclei from the $Asim 130$ region, namely $^{126}Pr$, $^{134}Pr$ and $^{132}La$. The theoretical predictions for the energy levels of the doublet bands as well as $E2$ and $M1$ transition probabilities between the states of the yrast band in the last two nuclei are compared with experiment and the results of other theoretical approaches. The obtained results reveal the applicability of the orthosymplectic extension of the IVBM.
95 - P.C. Srivastava 2015
In the present work, we have interpreted recently available experimental data for high-spin states of the near-spherical nuclei $^{91,92}$Zr, using the shell-model calculations within the full $f_{5/2}$, $p_{3/2}$, $p_{1/2}$, $g_{9/2}$ model space fo r protons and valence neutrons in $g_{9/2}$, $g_{7/2}$, $d_{5/2}$ orbits. We have employed a truncation for the neutrons due to huge matrix dimensions, by allowing one neutron excitation from $g_{9/2}$ orbital to $d_{5/2}$ and $g_{7/2}$ orbitals. Results are in good agreement with the available experimental data. Thus, theoretically, we have identified the structure of many high-spin states, which were tentatively assigned in the recent experimental work. The $^{91}$Zr $21/2^+$ isomer lies at low-energy region due to fully aligned spins of two $g_{9/2}$ protons and one $d_{5/2}$ neutron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا