ترغب بنشر مسار تعليمي؟ اضغط هنا

The pMSSM Interpretation of LHC Results Using Rernormalization Group Invariants

63   0   0.0 ( 0 )
 نشر من قبل Nausheen Shah
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The LHC has started to constrain supersymmetry-breaking parameters by setting bounds on possible colored particles at the weak scale. Moreover, constraints from Higgs physics, flavor physics, the anomalous magnetic moment of the muon, as well as from searches at LEP and the Tevatron have set additional bounds on these parameters. Renormalization Group Invariants (RGIs) provide a very useful way of representing the allowed parameter space by making direct connection with the values of these parameters at the messenger scale. Using a general approach, based on the pMSSM parametrization of the soft supersymmetry-breaking parameters, we analyze the current experimental constraints to determine the probability distributions for the RGIs. As examples of their application, we use these distributions to analyze the question of Gaugino Mass Unification and to probabilistically determine the parameters of General and Minimal Gauge Mediation with arbitrary Higgs mass parameters at the Messenger Scale.



قيم البحث

اقرأ أيضاً

The 19/20-parameter p(henomenological)MSSM with either a neutralino or gravitino LSP offers a flexible framework for the study of a wide variety of R-parity conserving MSSM SUSY phenomena at the 7, 8 and 14 TeV LHC. Here we present the results of a s tudy of SUSY signatures at these facilities obtained via a fast Monte Carlo replication of the ATLAS SUSY analysis suite. In particular, we show the ranges of the sparticle masses that are either disfavored or remain viable after all of the various searches at the 7 and 8 TeV runs are combined. We then extrapolate to 14 TeV with both 300 fb^-1 and 3 ab^-1 of integrated luminosity and determine the sensitivity of a jets + MET search to the pMSSM parameter space. We find that the high-luminosity LHC performs extremely well in probing natural SUSY models.
We explore the parameter choices in the five-dimensional Randall-Sundrum model with the inclusion of Higgs-radion mixing that can describe current LHC hints for one or more Higgs boson signals.
We study SUSY signatures at the 7, 8 and 14 TeV LHC employing the 19-parameter, R-Parity conserving p(henomenological)MSSM, in the scenario with a neutralino LSP. Our results were obtained via a fast Monte Carlo simulation of the ATLAS SUSY analysis suite. The flexibility of this framework allows us to study a wide variety of SUSY phenomena simultaneously and to probe for weak spots in existing SUSY search analyses. We determine the ranges of the sparticle masses that are either disfavored or allowed after the searches with the 7 and 8 TeV data sets are combined. We find that natural SUSY models with light squarks and gluinos remain viable. We extrapolate to 14 TeV with both 300 fb$^{-1}$ and 3 ab$^{-1}$ of integrated luminosity and determine the expected sensitivity of the jets + MET and stop searches to the pMSSM parameter space. We find that the high-luminosity LHC will be powerful in probing SUSY with neutralino LSPs and can provide a more definitive statement on the existence of natural Supersymmetry.
We investigate the sensitivity of the next generation of flavor-based low-energy experiments to probe the supersymmetric parameter space in the context of the phenomenological MSSM (pMSSM), and examine the complementarity with direct searches for Sup ersymmetry at the 13 TeV LHC in a quantitative manner. To this end, we enlarge the previously studied pMSSM parameter space to include all physical non-zero CP-violating phases, namely those associated with the gaugino mass parameters, Higgsino mass parameter, and the tri-linear couplings of the top quark, bottom quark and tau lepton. We find that future electric dipole moment and flavor measurements can have a strong impact on the viability of these models even if the sparticle spectrum is out of reach of the 13 TeV LHC. In particular, the lack of positive signals in future low-energy probes would exclude values of the phases between ${cal O}(10^{-2})$ and ${cal O}(10^{-1})$. We also find regions of parameter space where large phases remain allowed due to cancellations. Most interestingly, in some rare processes, such as BR($B_s to mu^+ mu^-$ ), we find that contributions arising from CP-violating phases can bring the potentially large SUSY contributions into better agreement with experiment and Standard Model predictions.
We present a global interpretation of Higgs, diboson, and top quark production and decay measurements from the LHC in the framework of the Standard Model Effective Field Theory (SMEFT) at dimension six. We constrain simultaneously 36 independent dire ctions in its parameter space, and compare the outcome of the global analysis with that from individual and two-parameter fits. Our results are obtained by means of state-of-the-art theoretical calculations for the SM and the EFT cross-sections, and account for both linear and quadratic corrections in the $1/Lambda^2$ expansion. We demonstrate how the inclusion of NLO QCD and $mathcal{O}left( Lambda^{-4}right)$ effects is instrumental to accurately map the posterior distributions associated to the fitted Wilson coefficients. We assess the interplay and complementarity between the top quark, Higgs, and diboson measurements, deploy a variety of statistical estimators to quantify the impact of each dataset in the parameter space, and carry out fits in BSM-inspired scenarios such as the top-philic model. Our results represent a stepping stone in the ongoing program of model-independent searches at the LHC from precision measurements, and pave the way towards yet more global SMEFT interpretations extended to other high-$p_T$ processes as well as to low-energy observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا