ترغب بنشر مسار تعليمي؟ اضغط هنا

Outburst of GX 304-1 monitored with INTEGRAL: positive correlation between the cyclotron line energy and flux

238   0   0.0 ( 0 )
 نشر من قبل Dmitry Klochkov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. GX 304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. The observations covered almost the entire outburst, allowing us to measure the sources broad-band X-ray spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.



قيم البحث

اقرأ أيضاً

128 - M. Diaz Trigo 2012
We analysed data from five XMM-Newton observations of GX 13+1 to investigate the variability of the photo-ionised absorber present in this source. We fitted EPIC and RGS spectra obtained from the least-variable intervals with a model consisting of di sc-blackbody and blackbody components together with a Gaussian emission feature at ~6.55-6.7 keV modified by absorption due to cold and photo-ionised material. We found a significant correlation between the hard, ~6-10 keV, flux, the ionisation and column density of the absorber and the equivalent width of the broad iron line. We interpret the correlation in a scenario in which a disc wind is thermally driven at large, ~10^{10} cm, radii and the broad line results from reprocessed emission in the wind and/or hot atmosphere. The breadth of the emission line is naturally explained by a combination of scattering, recombination and fluorescence processes. We attribute the variations in the absorption and emission along the orbital period to the view of different parts of the wind, possibly located at slightly different inclination angles. We constrain the inclination of GX 13+1 to be between 60 and 80 degrees from the presence of strong absorption in the line of sight, that obscures up to 80% of the total emission in one observation, and the absence of eclipses. We conclude that the presence of a disc wind and/or a hot atmosphere can explain the current observations of narrow absorption and broad iron emission features in neutron star low mass X-ray binaries as a class.
We present two observations of the high-mass X-ray binary GX 301-2 with NuSTAR, taken at different orbital phases and different luminosities. We find that the continuum is well described by typical phenomenological models, like a very strongly absorb ed NPEX model. However, for a statistically acceptable description of the hard X-ray spectrum we require two cyclotron resonant scattering features (CRSF), one at ~35 keV and the other at ~50 keV. Even though both features strongly overlap, the good resolution and sensitivity of NuSTAR allows us to disentangle them at >=99.9% significance. This is the first time that two CRSFs are seen in GX 301-2. We find that the CRSFs are very likely independently formed, as their energies are not harmonically related and, if it were a single line, the deviation from a Gaussian shape would be very large. We compare our results to archival Suzaku data and find that our model also provides a good fit to those data. We study the behavior of the continuum as well as the CRSF parameters as function of pulse phase in seven phase bins. We find that the energy of the 35 keV CRSF varies smoothly as function of phase, between 30-38 keV. To explain this variation, we apply a simple model of the accretion column, taking the altitude of the line-forming region, the velocity of the in-falling material, and the resulting relativistic effects into account. We find that in this model the observed energy variation can be explained simply due to a variation of the projected velocity and beaming factor of the line forming region towards us.
We report the discovery of a cyclotron resonance scattering feature (CRSF) in the X-ray spectrum of GX 304-1, obtained by RXTE and Suzaku during major outbursts detected by MAXI in 2010. The peak intensity in August reached 600 mCrab in the 2-20 keV band, which is the highest ever observed from this source. The RXTE observations on more than twenty occasions and one Suzaku observation revealed a spectral absorption feature at around 54 keV, which is the first CRSF detection from this source. The estimated strength of surface magnetic field, $4.7 times 10^{12}$ G, is one of the highest among binary X-ray pulsars from which CRSFs have ever been detected. The RXTE spectra taken during the August outburst also suggest that the CRSF energy changed over 50-54 keV, possibly in a positive correlation with the X-ray flux. The behavior is qualitatively similar to that observed from Her X-1 on long time scales, or from A 0535+26, but different from the negative correlation observed from 4U 0115+63 and X 0331+53.
88 - R. Staubert 2020
We summarize the results of a dedicated effort between 2012 and 2019 to follow the evolution of the cyclotron line in Her~X-1 through repeated NuSTAR observations. The previously observed nearly 20-year long decay of the cyclotron line energy has end ed around 2012: from there onward the pulse phase averaged flux corrected cyclotron line energy has remained stable and constant at an average value of Ecyc= (37.44+/-0.07) keV (normalized to a flux level of 6.8 RXTE/ASM-cts/s). The flux dependence of Ecyc discovered in 2007 is now measured with high precision, giving a slope of (0.675+/-0.075) keV/(ASM-cts/s), corresponding to an increase of 6.5% of Ecyc for an increase in flux by a factor of two. We also find that all line parameters as well as the continuum parameters show a correlation with X-ray flux. While a correlation between Ecyc and X-ray flux (both positive and negative) is now known for several accreting binaries with various suggestions for the underlying physics, the phenomenon of a long-term decay has so far only been seen in Her~X-1 and Vela~X-1, with far less convincing explanations.
377 - Felix Fuerst 2013
We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux le vels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of Lx ~ 3x10^36 erg/s. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا