ترغب بنشر مسار تعليمي؟ اضغط هنا

Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

171   0   0.0 ( 0 )
 نشر من قبل David South
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.


قيم البحث

اقرأ أيضاً

The four LEP experiments ALEPH, DELPHI, L3 and OPAL successfully recorded e+e- collision data during the years 1989 to 2000. As part of the ordinary evolution in High Energy Physics, these experiments can not be repeated and their data is therefore u nique. This article briefly reviews the data preservation efforts undertaken by the four experiments beyond the end of data taking. The current status of the preserved data and associated tools is summarised.
This report represents the response of the Intensity Frontier Quark Flavor Physics Working Group to the Snowmass charge. We summarize the current status of quark flavor physics and identify many exciting future opportunities for studying the properti es of strange, charm, and bottom quarks. The ability of these studies to reveal the effects of new physics at high mass scales make them an essential ingredient in a well-balanced experimental particle physics program.
Developing nations are particularly susceptible to the adverse effects of global warming. By 2040, 14 percent of global emissions will come from data centers. This paper presents early findings in the use AI and digital twins to model and optimize data center operations.
The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME) - - the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا