ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Physics at the Intensity Frontier

214   0   0.0 ( 0 )
 نشر من قبل JoAnne Hewett
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.



قيم البحث

اقرأ أيضاً

The Intensity Frontier (IF) is a primary focus of the U.S.-based particle physics program. It encompasses a large spectrum of physics, including quark flavor physics, charged lepton processes, neutrinos, baryon number violation, new light weakly-coup led particles, and nucleons, nuclei and atoms. There are many experiments, a range of scales in data output and throughput, and a wide range in the number of experimenters. The experiments, projects and theory in this area all require demanding computing capabilities and technologies. The IF experiments have significant computing requirements for simulation, theory and modeling, beam line and experiment design, triggers and DAQ, online monitoring, event reconstruction and processing, and physics analysis. We have conducted a qualitative survey of the current and near-term future experiments in the IF to understand the computing demands of this area and their expected evolution. This report details the expected computing requirements for the IF in the context of the Snowmass Community Summer Study 2013.
In this Snowmass whitepaper, we describe the impact of ongoing and proposed intensity frontier experiments on the parameter space of the Minimally Supersymmetric Standard Model (MSSM). We extend a set of phenomenological MSSM (pMSSM) models to includ e non-zero CP-violating phases and study the sensitivity of various flavor observables in these scenarios Future electric dipole moment and rare meson decay experiments can have a strong impact on the viability of these models that is relatively independent of the detailed superpartner spectrum. In particular, we find that these experiments have the potential to probe models that are expected to escape searches at the high-luminosity LHC.
137 - T. Tajima , K. Homma 2012
Over the last Century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the collide rs shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers.
The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We a dvocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.
These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields (Snowmass 2013) on the future program of particle physics in the U.S. Chapter 2, on the Intensity Frontier, discusses the program of rese arch with high-intensity beams and rare processes. This area includes experiments on neutrinos, proton decay, charged-lepton and quark weak interactions, atomic and nuclear probes of fundamental symmetries, and searches for new, light, weakly-interacting particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا