ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron-skin thickness from the study of the anti-analog giant dipole resonance

131   0   0.0 ( 0 )
 نشر من قبل Attila Krasznahorkay
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approximation (RPA) and turned out to be very sensitive to the neutron-skin thickness (DeltaR_(pn)). By comparing the theoretical results with the measured one, the DeltaR_(pn) value for 124Sn was deduced to be 0.175 pm 0.048 fm, which agrees well with the previous results. The energy of the AGDR measured previously for ^(208)Pb was also used to determine the DeltaR_(pn) for ^(208)Pb. In this way a very precise DeltaR_(pn) = 0.181 pm 0.031 neutron-skin thickness has been obtained for 208Pb. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.



قيم البحث

اقرأ أيضاً

The $^{208}$Pb($p$,$ngammabar p$) $^{207}$Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its $gamma$-decay to the isobaric analog state in coincidence with proton dec ay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness ($Delta R_{pn}$). By comparing the theoretical results with the measured transition energy, the value of 0.190 $pm$ 0.028 fm has been determined for $Delta R_{pn}$ of $^{208}$Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation ($J=32.7 pm 0.6$ MeV) and the slope of the symmetry energy ($L=49.7 pm 4.4$ MeV), resulting in more stringent constraints than most of the previous studies.
213 - Kenichi Yoshida 2017
The occurrence of the low-lying charge-exchange non spin-flip dipole modes below the giant resonance in neutron-rich nuclei is predicted on the basis of nuclear density functional theory. The ground and excited states are described in the framework o f the self-consistent Hartree-Fock-Bogoliubov and the proton-neutron quasiparticle-random-phase approximation employing a Skyrme-type energy density functional. The model calculations are performed for the spherical neutron-rich Ca, Ni, and Sn isotopes. It is found that the low-lying states appear sensitively to the shell structure associated with the $-1 hbar omega_0$ excitation below the Gamow-Teller states. Furthermore, the pygmy resonance emerges below the giant resonance when the neutrons occupy the low-$ell (ell leq 2 -3)$ orbitals analogous to the pygmy resonance seen in the electric dipole response.
169 - Jun Xu 2021
The remaining uncertainties of isovector nuclear interactions call for reliable experimental measurements of isovector probes in finite nuclei. Based on the Bayesian analysis, although the neutron-skin thickness data or the isovector giant dipole res onance data in $^{208}$Pb can constrain only one isovector interaction parameter, correlations between other parameters are built. Using combined data of both the neutron-skin thickness and the isovector giant dipole resonance helps to constrain significantly all isovector interaction parameters, thus serves as a useful way in the future analysis.
115 - A. Tamii 2011
A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars.
119 - M. Hunyadi , H. Hashimoto , T. Li 2009
Proton decay from the 3$hbaromega$ isoscalar giant dipole resonance (ISGDR) in $^{58}$Ni has been measured using the ($alpha,alphap$) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered $alpha$ particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of $^{57}$Co have been determined, and the results compared to predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in $^{57}$Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا