ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT Suzaku observations of the Fermi pulsar PSR J1028-5819

270   0   0.0 ( 0 )
 نشر من قبل Roberto Mignani
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. P. Mignani




اسأل ChatGPT حول البحث

We used optical images taken with the Very Large Telescope (VLT) in the B and V bands to search for the optical counterpart of PSR J1028-5819 or constrain its optical brightness. At the same time, we used an archival Suzaku observation to confirm the preliminary identification of the pulsars X-ray counterpart obtained by Swift. Due to the large uncertainty on the pulsars radio position and the presence of a bright (V = 13.2) early F-type star at < 4, we could not detect its counterpart down to flux limits of B~25.4 and V ~25.3, the deepest obtained so far for PSR J1028-5819. From the Suzaku observations, we found that the X-ray spectrum of the pulsars candidate counterpart is best-fit by a power-law with spectral index 1.7 +/- 0.2 and an absorption column density NH < 10^21 cm-2, which would support the proposed X-ray identification. Moreover, we found possible evidence for the presence of diffuse emission around the pulsar. If real, and associated with a pulsar wind nebula (PWN), its surface brightness and angular extent would be compatible with the expectations for a ~100 kyr old pulsar at the PSR J1028-5819 distance.



قيم البحث

اقرأ أيضاً

PSR J1048-5832 is a Vela-like (P=123.6 ms; tau~20.3 kyr) gamma-ray pulsar detected by Fermi, at a distance of ~2.7 kpc and with a rotational energy loss rate dot{E}_{SD} ~2 x 10^{36} erg/s. The PSR J1048-5832 field has been observed with the VLT in t he V and R bands. We used these data to determine the colour of the object detected closest to the Chandra position (Star D) and confirm that it is not associated with the pulsar. For the estimated extinction along the line of sight, inferred from a re-analysis of the Chandra and XMM-Newton spectra, the fluxes of Star D (V~26.7; R~25.8) imply a -0.13 < (V-R)_0 < 0.6. This means that the PSR J1048-5832 spectrum would be unusually red compared to the Vela pulsar.Moreover, the ratio between the unabsorbed optical and X-ray flux of PSR J1048-5832 would be much higher than for other young pulsars. Thus, we conclude that Star D is not the PSR J1048-5832 counterpart. We compared the derived R and V-band upper limits (R>26.4; V>27.6) with the extrapolation of the X and gamma-ray spectra and constrained the pulsar spectrum at low-energies. In particular, the VLT upper limits suggest that the pulsar spectrum could be consistent with a single power-law, stretching from the gamma-rays to the optical.
We present 35 ks Chandra ACIS observations of the 42 Myr old radio pulsar PSR B1451-68. A point source is detected 0.32 +/- 0.73 from the expected radio pulsar position. It has ~200 counts in the 0.3-8 keV energy range. We identify this point source as the X-ray counterpart of the radio pulsar. PSR B1451-68 is located close to a 2MASS point source, for which we derive 7% as the upper limit on the flux contribution to the measured pulsar X-ray flux. The pulsar spectrum can be described by either a power-law model with photon index Gamma=2.4 (+0.4/-0.3) and a unrealistically high absorbing column density N(H)= (2.5 (+1.2/-1.3)) * 10^(21) cm^-2, or by a combination of a kT=0.35 (+0.12/-0.07) keV blackbody and a Gamma = 1.4 +/- 0.5 power-law component for N(H)[DM]= 2.6 * 10^(20) cm^-2, estimated from the pulsar dispersion measure. At the parallactic, Lutz-Kelker bias corrected distance of 480 pc, the non-thermal X-ray luminosities in the 0.3-8 keV energy band are either Lx(nonth)= (11.3 +/- 1.7) * 10^(29) erg/s or Lx(nonth)= (5.9 (+4.9/-5.0)) * 10^(29) erg/s, respectively. This corresponds to non-thermal X-ray efficiencies of either eta(nonth)= Lx(nonth) / (dE/dt) ~ 0.005 or 0.003, respectively.
PSR J0205+6449 is a young ({approx} 5400 years), Crab-like pulsar detected in radio and at X and {gamma}-ray energies and has the third largest spin-down flux among known rotation powered pulsars. It also powers a bright synchrotron nebula detected i n the optical and X-rays. At a distance of {approx} 3.2 kpc and with an extinction comparable to the Crab, PSR J0205+6449 is an obvious target for optical observations. We observed PSR J0205+6449 with several optical facilities, including 8m class ground-based telescopes, such as the Gemini and the Gran Telescopio Canarias. We detected a point source, at a significance of 5.5{sigma}, of magnitude i {approx} 25.5, at the centre of the optical synchrotron nebula, coincident with the very accurate Chandra and radio positions of the pulsar. Thus, we discovered a candidate optical counterpart to PSR J0205+6449. The pulsar candidate counterpart is also detected in the g ({approx}27.4) band and weakly in the r ({approx}26.2) band. Its optical spectrum is fit by a power law with photon index {Gamma}0 = 1.9{pm}0.5, proving that the optical emission if of non-thermal origin, is as expected for a young pulsar. The optical photon index is similar to the X-ray one ({Gamma}X = 1.77{pm}0.03), although the optical fluxes are below the extrapolation of the X-ray power spectrum. This would indicate the presence of a double spectral break between the X-ray and optical energy range, at variance with what is observed for the Crab and Vela pulsars, but similar to the Large Magellanic Cloud pulsar PSR B0540-69.
168 - R.P.Mignani 2007
Recent radio observations have unveiled the existence of a number of radio pulsars with spin-down derived magnetic fields in the magnetar range. However, their observational properties appears to be more similar to classical radio pulsars than to mag netars. To shed light on this puzzle we first have to determine whether the spin-down derived magnetic field values for these radio pulsars are indeed representative of the actual neutron star magnetic field or if they are polluted, e.g. by the effects of a torque from a fallback disk. To investigate this possibility, we have performed deep IR observations of one of these high magnetic field radio pulsars (PSR J1119-6127) with the ESO VLT to search for IR emission which can be associated with a disk. No IR emission is detected from the pulsar position down to J=24, H=23, Ks=22. By comparing our flux upper limits with the predictions of fallback disk models, we have found that we can only exclude the presence of a disk with accretion rate dot M >3x10^16 g/s. This lower limit cannot rule out the presence of a substantial disk torque on the pulsar, which would then lead to overestimate the value of the magnetic field inferred from P and dot P.
We present the results of new Agile observations of PSR B1509-58 performed over a period of 2.5 years following the detection obtained with a subset of the present data. The modulation significance of the lightcurve above 30 MeV is at a 5$sigma$ conf idence level and the lightcurve is similar to those found earlier by Comptel up to 30 MeV: a broad asymmetric first peak reaching its maximum 0.39 +/- 0.02 cycles after the radio peak plus a second peak at 0.94 +/- 0.03. The gamma-ray spectral energy distribution of the pulsed flux detected by Comptel and Agile is well described by a power-law (photon index alpha=1.87+/-0.09) with a remarkable cutoff at E_c=81 +/- 20 MeV, representing the softest spectrum observed among gamma-ray pulsars so far. The pulsar luminosity at E > 1 MeV is $L_{gamma}=4.2^{+0.5}_{-0.2} times10^{35}$ erg/s, assuming a distance of 5.2 kpc, which implies a spin-down conversion efficiency to gamma-rays of $sim 0.03$. The unusual soft break in the spectrum of PSR B1509-58 has been interpreted in the framework of polar cap models as a signature of the exotic photon splitting process in the strong magnetic field of this pulsar. In this interpretation our spectrum constrains the magnetic altitude of the emission point(s) at 3 km above the neutron star surface, implying that the attenuation may not be as strong as formerly suggested because pair production can substitute photon splitting in regions of the magnetosphere where the magnetic field becomes too low to sustain photon splitting. In the case of an outer-gap scenario, or the two pole caustic model, better constraints on the geometry of the emission would be needed from the radio band in order to establish whether the conditions required by the models to reproduce Agile lightcurves and spectra match the polarization measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا