ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-color Cavity Metrology

236   0   0.0 ( 0 )
 نشر من قبل Jameson Rollins
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long baseline laser interferometers used for gravitational wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by four orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational wave detector. The possibility for using multi-color techniques to overcome current quantum and thermal noise limits is also discussed.



قيم البحث

اقرأ أيضاً

Earth-based gravitational-wave detectors will be limited by quantum noise in a large part of their spectrum. The most promising technique to achieve a broadband reduction of such noise is the injection of a frequency dependent squeezed vacuum state f rom the output port of the detector, whit the squeeze angle rotated by the reflection off a Fabry-Perot filter cavity. One of the most important parameters limiting the squeezing performance is represented by the optical losses of the filter cavity. We report here the operation of a 300 m filter cavity prototype installed at the National Astronomical Observatory of Japan (NAOJ). The cavity is designed to obtain a rotation of the squeeze angle below 100 Hz. After achieving the resonance of the cavity with a multi-wavelength technique, the round trip losses have been measured to be between 50 ppm and 90 ppm. This result demonstrates that with realistic assumption on the input squeeze factor and on the other optical losses, a quantum noise reduction of at least 4 dB in the frequency region dominated by radiation pressure can be achieved.
We discuss the optical properties of the solar gravitational lens (SGL). We estimate the power of the EM field received by an imaging telescope. Studying the behavior of the EM field at the photometric detector, we develop expressions that describe t he received power from a point source as well as from an extended resolved source. We model the source as a disk with uniform surface brightness and study the contribution of blur to a particular image pixel. To describe this process, we develop expressions describing the power received from the directly imaged region of the exoplanet, from the rest of the exoplanet and also the power for off-image pointing. We study the SGLs amplification and its angular resolution in the case of observing an extended source with a modest size telescope. The results can be applied to direct imaging of exoplanets using the SGL.
In a space based gravitational wave antenna like LISA, involving long light paths linking distant emitter/receiver spacecrafts, signal detection amounts to measuring the light-distance variationsthrough a phase change at the receiver. This is why spu rious phase fluctuations due to various mechanical/thermal effects must be carefully studied. We consider here a possible pointing jitter in the light beam sent from the emitter. We show how the resulting phase noise depends on the quality of the wavefront due to the incident beam impinging on the telescope and due to the imperfections of the telescope itself. Namely, we numerically assess the crossed influence of various defects (aberrations and astigmatisms), inherent to a real telescope with pointing fluctuations.
108 - S. Leavey 2014
Waveguide mirrors possess nano-structured surfaces which can potentially provide a significant reduction in thermal noise over conventional dielectric mirrors. To avoid introducing additional phase noise from motion of the mirror transverse to the re flected light, however, they must possess a mechanism to suppress the phase effects associated with the incident light translating across the nano-structured surface. It has been shown that with carefully chosen parameters this additional phase noise can be suppressed. We present an experimental measurement of the coupling of transverse to longitudinal displacements in such a waveguide mirror designed for 1064 nm light. We place an upper limit on the level of measured transverse to longitudinal coupling of one part in seventeen thousand with 95% confidence, representing a significant improvement over a previously measured grating mirror.
We carried out a computer simulation of a large gravitational wave (GW) interferometer using the specifications of the LIGO instruments. We find that if in addition to the carrier, a single sideband offset from the carrier by the fsr frequency (the f ree spectral range of the arm cavities) is injected, it is equally sensitive to GW signals as is the carrier. The amplitude of the fsr sideband signal in the DC region is generally much less subject to noise than the carrier, and this makes possible the detection of periodic signals with frequencies well below the so-called seismic wall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا