ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Analysis of Gravitational Waves Signals from Millisecond Pulsars

92   0   0.0 ( 0 )
 نشر من قبل Jaziel Goulart Coelho
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present work is devoted to the detection of monochromatic gravitational wave signals emitted by pulsars using ALLEGROs data detector. We will present the region (in frequency) of millisecond pulsars of the globular cluster 47 Tucanae (NGC 104) in the band of detector. With this result it was possible to analyse the data in the frequency ranges of the pulsars J1748-2446L and J1342+2822c, searching for annual Doppler variations using power spectrum estimates for the year 1999. We tested this method injecting a simulated signal in real data and we were able to detect it.

قيم البحث

اقرأ أيضاً

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering , which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGOs first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
The recent direct detection of gravitational waves (GWs) from binary black hole mergers (2016, Phys. Rev. Lett. 116, no. 6, 061102; no. 24, 241103) opens up an entirely new non-electromagnetic window into the Universe making it possible to probe phys ics that has been hidden or dark to electromagnetic observations. In addition to cataclysmic events involving black holes, GWs can be triggered by physical processes and systems involving neutron stars. Properties of neutron stars are largely determined by the equation of state (EOS) of neutron-rich matter, which is the major ingredient in calculating the stellar structure and properties of related phenomena, such as gravitational wave emission from elliptically deformed pulsars and neutron star binaries. Although the EOS of neutron-rich matter is still rather uncertain mainly due to the poorly known density dependence of nuclear symmetry energy at high densities, significant progress has been made recently in constraining the symmetry energy using data from terrestrial nuclear laboratories. These constraints could provide useful information on the limits of GWs expected from neutron stars. Here after briefly reviewing our previous work on constraining gravitational radiation from elliptically deformed pulsars with terrestrial nuclear laboratory data in light of the recent gravitational wave detection, we estimate the maximum gravitational wave strain amplitude, using an optimistic value for the breaking strain of the neutron star crust, for 15 pulsars at distances 0.16 kpc to 0.91 kpc from Earth, and find it to be in the range of $sim[0.2-31.1]times 10^{-24}$, depending on the details of the EOS used to compute the neutron star properties. Implications are discussed.
459 - Adrien Bourgoin 2021
The LISA mission will observe gravitational waves emitted from tens of thousands of galactic binaries, in particular white dwarf binary systems. These objects are known to have intense magnetic fields. However, these fields are usually not considered as their influence on the orbital and rotational motion of the binary is assumed for being too weak. It turns out that magnetic fields modify the orbits, in particular their geometry with respect to the observer. In this work, we revisit the issue, assuming magnetostatic approximation, and we show how the magnetic fields within a binary system generate a secular drift in the argument of the periastron, leading then, to modifications of the gravitational waveforms that are potentially detectable by LISA.
The direct detection of gravitational waves with upcoming second-generation gravitational wave detectors such as Advanced LIGO and Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We pres ent a data analysis pipeline called TIGER (Test Infrastructure for GEneral Relativity), which is designed to utilize detections of compact binary coalescences to test GR in this regime. TIGER is a model-independent test of GR itself, in that it is not necessary to compare with any specific alternative theory. It performs Bayesian inference on two hypotheses: the GR hypothesis $mathcal{H}_{rm GR}$, and $mathcal{H}_{rm modGR}$, which states that one or more of the post-Newtonian coefficients in the waveform are not as predicted by GR. By the use of multiple sub-hypotheses of $mathcal{H}_{rm modGR}$, in each of which a different number of parameterized deformations of the GR phase are allowed, an arbitrarily large number of testing parameters can be used without having to worry about a model being insufficiently parsimonious if the true number of extra parameters is in fact small. TIGER is well-suited to the regime where most sources have low signal-to-noise ratios, again through the use of these sub-hypotheses. Information from multiple sources can trivially be combined, leading to a stronger test. We focus on binary neutron star coalescences, for which sufficiently accurate waveform models are available that can be generated fast enough on a computer to be fit for use in Bayesian inference. We show that the pipeline is robust against a number of fundamental, astrophysical, and instrumental effects, such as differences between waveform approximants, a limited number of post-Newtonian phase contributions being known, the effects of neutron star spins and tidal deformability on the orbital motion, and instrumental calibration errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا