ﻻ يوجد ملخص باللغة العربية
We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are: high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed value of Delta-m15, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying the Delta-m15 relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the Delta-m15 relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, alpha, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the Ni56 distribution towards higher velocity and alpha < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.
The Type~Ia supernova (SN~Ia) 2017cfd in IC~0511 (redshift z = 0.01209+- 0.00016$) was discovered by the Lick Observatory Supernova Search 1.6+-0.7 d after the fitted first-light time (FFLT; 15.2 d before B-band maximum brightness). Photometric and s
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the ma
A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, rho-11fe, was extended to
We present optical and ultraviolet photometry, as well as optical spectra, for the type II supernova (SN) 2015bf. Our observations cover the phases from $sim 2$ to $sim 200$ d after explosion. The first spectrum is characterised by a blue continuum w
The Type Ia supernova (SN Ia) SN 2000cx was one of the most peculiar transients ever discovered, with a rise to maximum brightness typical of a SN Ia, but a slower decline and a higher photospheric temperature. Thirteen years later SN 2013bh (aka iPT