ترغب بنشر مسار تعليمي؟ اضغط هنا

The Type II Supernova Rate in z~0.1 Galaxy Clusters from the Multi-Epoch Nearby Cluster Survey

105   0   0.0 ( 0 )
 نشر من قبل Melissa Graham
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 7 spectroscopically confirmed Type II cluster supernovae (SNeII) discovered in the Multi-Epoch Nearby Cluster Survey, a supernova survey targeting 57 low redshift 0.05 < z < 0.15 galaxy clusters with the Canada-France-Hawaii Telescope. We find the rate of Type II supernovae within the virial radius of these galaxy clusters to be 0.026 (+0.085 -0.018 stat; +0.003 -0.001 sys) SNe per century per 1e10 solar masses. Surprisingly, one SNII is in a red sequence host galaxy that shows no clear evidence of recent star formation. This is unambiguous evidence in support of ongoing, low-level star formation in at least some cluster elliptical galaxies, and illustrates that galaxies that appear to be quiescent cannot be assumed to host only Type Ia SNe. Based on this single SNII we make the first measurement of the SNII rate in red sequence galaxies, and find it to be 0.007 (+0.014 -0.007 stat; +0.009 -0.001 sys) SNe per century per 1e10 solar masses. We also make the first derivation of cluster specific star formation rates (sSFR) from cluster SNII rates. We find that for all galaxy types, sSFR is 5.1 (+15.8 -3.1 stat; +0.9 -0.9 sys) solar masses per year per 1e12 solar masses, and for red sequence galaxies only, it is 2.0 (+4.2 -0.9 stat; +0.4 -0.4 sys) solar masses per year per 1e12 solar masses. These values agree with SFRs measured from infrared and ultraviolet photometry, and H-alpha emission from optical spectroscopy. Additionally, we use the SFR derived from our SNII rate to show that although a small fraction of cluster Type Ia SNe may originate in the young stellar population and experience a short delay time, these results do not preclude the use of cluster SNIa rates to derive the late-time delay time distribution for SNeIa.


قيم البحث

اقرأ أيضاً

We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.45 from the Hubble Space Telescope (HST) Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 + /- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41 +0.47/-0.40, consistent with measurements of the delay time distribution in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper delay time distribution at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) mathrm{SNu}r h^{2}$ ($mathrm{SNu}x = 10^{-12} L_{xsun}^{-1} mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_{-0.30-0.01}) mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is ${1.94}^{+1.31+0.043}_{-0.91-0.015}$ and ${3.02}^{+1.31+0.062}_{-1.03-0.048}$, for C4 and maxBCG clusters. The SN rate in galaxy clusters as a function of redshift...shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find $r_{L} = $ $[(0.49^{+0.15}_{-0.14}) +$ $(0.91^{+0.85}_{-0.81}) times z]$ $mathrm{SNu}B$ $h^{2}$. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies... we estimate the fraction of cluster SNe that are hostless to be $(9.4^+8._3-5.1)%$.
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z lesssim 0.3, of which 27 0 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+1.61-0.95 % of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of rV = (2.69+0.34+0.21-0.30-0.01) x10^{-5} SNe yr^{-1} Mpc-3 (H0 /(70 km s^{-1} Mpc^{-1}))^{3} at a mean redshift of ~ 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r_V(z) = A_p x ((1 + z)/(1 + z0))^{ u}, over the redshift range 0.0 < z < 0.3 with z0 = 0.21, results in A_p = (3.43+0.15-0.15) x 10^{-5} SNe yr^{-1} Mpc-3 (H0 /(70 km s^{-1} Mpc^{-1}))^{3} and u = 2.04+0.90-0.89.
Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for supernovae (SNe) in galaxy clusters, at a redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster, in which we discovered five likely cluster SNe, six possible cluster SNe Ia, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35 SNuB +0.17/-0.12 (statistical) pm0.13 (classification) pm0.01 (systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM +0.055/-0.039 (statistical) pm0.042 (classification) pm0.005 (systematic) [where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron mass in clusters was already in place by z~1. The recently observed doubling of iron abundances in the intracluster medium between z=1 and 0, if real, is likely the result of redistribution of existing iron, rather than new production of iron.
226 - Mathew Smith 2011
Using data from the Sloan Digital Sky Supernova Survey-II, we measure the rate of Type Ia Supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05<z<0.25 is constructed. Using broad-band photom etry we use the PEGASE spectral energy distributions (SEDs) to estimate host galaxy stellar masses and recent star-formation rates. We find that the rate of SNe Ia per unit stellar mass is significantly higher (by a factor of ~30) in highly star-forming galaxies compared to passive galaxies. When parameterizing the SN Ia rate (SNR_Ia) based on host galaxy properties, we find that the rate of SNe Ia in passive galaxies is not linearly proportional to the stellar mass, instead a SNR_Ia proportional to M^0.68 is favored. However, such a parameterization does not describe the observed SN Ia rate in star-forming galaxies. The SN Ia rate in star-forming galaxies is well fit by SNR_Ia = 1.05pm0.16x10^{-10} M ^{0.68pm0.01} + 1.01pm0.09x10^{-3} SFR^{1.00pm0.05} (statistical errors only), where M is the host galaxy mass and SFR is the star-formation rate. These results are insensitive to the selection criteria used, redshift limit considered and the inclusion of non-spectroscopically confirmed SNe Ia. We also show there is a dependence between the distribution of the MLCS light-curve decline rate parameter, Delta, and host galaxy type. Passive galaxies host less luminous SNe Ia than seen in moderately and highly star-forming galaxies, although a population of luminous SNe is observed in passive galaxies, contradicting previous assertions that these SNe Ia are only observed in younger stellar systems. The MLCS extinction parameter, A_V, is similar in passive and moderately star-forming galaxies, but we find indications that it is smaller, on average, in highly star-forming galaxies. We confirm these results using the SALT2 light-curve fitter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا