ترغب بنشر مسار تعليمي؟ اضغط هنا

VLTI/AMBER observations of the Seyfert nucleus of NGC 3783

76   0   0.0 ( 0 )
 نشر من قبل Gerd Weigelt
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The putative tori surrounding the accretion disks of active galactic nuclei (AGNs) play a fundamental role in the unification scheme of AGNs. Infrared long-baseline interferometry allows us to study the inner dust distribution in AGNs with unprecedented spatial resolution over a wide infrared wavelength range. Aims. Near- and mid-infrared interferometry is used to investigate the milli-arcsecond-scale dust distribution in the type 1.5 Seyfert nucleus of NGC 3783. Methods. We observed NGC 3783 with the VLTI/AMBER instrument in the K-band and compared our observations with models. Results. From the K-band observations, we derive a ring-fit torus radius of 0.74 +/- 0.23 mas or 0.16 +/- 0.05 pc. We compare this size with infrared interferometric observations of other AGNs and UV/optical-infrared reverberation measurements. For the interpretation of our observations, we simultaneously model our near- and mid-infrared visibilities and the SED with a temperature/density-gradient model including an additional inner hot 1400 K ring component.

قيم البحث

اقرأ أيضاً

While the search for exoplanets around main sequence stars more massive than the Sun have found relatively few such objects, surveys performed around giant stars have led to the discovery of more than 30 new exoplanets. The interest in studying plane t hosting giant stars resides in the possibility of investigating planet formation around stars more massive than the Sun. Masses of isolated giant stars up to now were only estimated from evolutionary tracks, which led to different results depending on the physics considered. To calibrate the theory, it is therefore important to measure a large number of giant star diameters and masses as much as possible independent of physical models. We aim in the determination of diameters and effective temperatures of 5 giant stars, one of which is known to host a planet. AMBER/VLTI observations with the ATs were executed in low resolution mode on 5 giant stars. In order to measure high accurate calibrated squared visibilities, a calibrator-star-calibrator observational sequence was performed. We measured the uniform disk and limb-darkened angular diameters of 4 giant stars. The effective temperatures were also derived by combining the bolometric luminosities and the interferometric diameters. Lower effective temperatures were found when compared to spectroscopic measurements. The giant star HD12438 was found to have an unknown companion star at an angular separation of ~ 12 mas. Radial velocity measurements present in the literature confirm the presence of a companion with a very long orbital period (P ~ 11.4 years).}
75 - Y. Wang , G. Weigelt , A. Kreplin 2012
Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC 300 with the VLTI/AMBER instrument in the H and K bands and compared these observations with tem perature-gradient models to derive model parameters. Results. The measured low visibility values, wavelength dependence of the visibilities, and wavelength dependence of the closure phase directly suggest that MWC 300 consists of a resolved disk and a close binary. We present a model consisting of a binary and a temperature-gradient disk that is able to reproduce the visibilities, closure phases, and spectral energy distribution. This model allows us to constrain the projected binary separation (~4.4 mas or ~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature power-law index, and other parameters.
AMBER is the first near infrared focal instrument of the VLTI. It combines three telescopes and produces spectrally resolved interferometric measures. This paper discusses some preliminary results of the first scientific observations of AMBER with th ree Unit Telescopes at medium (1500) and high (12000) spectral resolution. We derive a first set of constraints on the structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum and the LBV Eta Carinae.
To understand the nature of transient obscuring outflows in active galactic nuclei, we observed the Seyfert 1 galaxy NGC 3783 on two occasions in December 2016 triggered by Swift monitoring indicating strong soft X-ray absorption in November. We obta ined ultraviolet spectra using COS on HST and optical spectra using FEROS on the MPG/ESO 2.2-m telescope that were simultaneous with X-ray spectra from XMM-Newton and NuSTAR. We find new components of broad, blue-shifted absorption associated with Ly$alpha$, ion{N}{v}, ion{Si}{iv}, and ion{C}{iv} in our COS spectra. The absorption extends from velocities near zero in the rest-frame of the host galaxy to $-6200$ $rm km~s^{-1}$. These features appear for the first time in NGC 3783 at the same time as the heavy soft X-ray absorption seen in the XMM-Newton X-ray spectra. The X-ray absorption has a column density of $sim 10^{23}~rm cm^{-2}$, and it partially covers the X-ray continuum source. The X-ray absorption becomes more transparent in the second observation, as does the UV absorption. Combining the X-ray column densities with the UV spectral observations yields an ionization parameter for the obscuring gas of log $xi =1.84^{+0.4}_{-0.2}$ $rm erg~cm~s^{-1}$. Despite the high intensity of the UV continuum in NGC 3783, F(1470 AA)=$8 times 10^{-14}~rm erg~cm^{-2}~s^{-1}~AA^{-1}$, the well known narrow UV absorption lines are deeper than in earlier observations in unobscured states, and low ionization species such as ion{C}{iii} appear, indicating that the narrow-line gas is more distant from the nucleus and is being shadowed by the gas producing the obscuration. Despite the high continuum flux levels in our observations of NGC 3783, moderate velocities in the UV broad line profiles have substantially diminished. We suggest that a collapse of the broad line region has led to the outburst and triggered the obscuring event.
190 - F. Combes 2014
We report ALMA observations of CO(3-2) emission in the Seyfert 1 galaxy NGC 1566, at a spatial resolution of 25 pc. Our aim is to investigate the morphology and dynamics of the gas inside the central kpc, and to probe nuclear fueling and feedback phe nomena. NGC 1566 has a nuclear bar of 1.7 kpc radius and a conspicuous grand design spiral starting from this radius. The ALMA field of view, of diameter 0.9 kpc, lies well inside the nuclear bar and reveals a molecular trailing spiral structure from 50 to 300~pc in size, which is contributing to fuel the nucleus, according to its negative gravity torques. The spiral starts with a large pitch angle from the center and then winds up in a pseudo-ring at the inner Lindblad resonance (ILR) of the nuclear bar. This is the first time that a trailing spiral structure is clearly seen driving the gas inwards inside the ILR ring of the nuclear bar. This phenomenon shows that the massive central black hole has a significant dynamical influence on the gas, triggering its fueling. The gaseous spiral is well correlated with the dusty spiral seen through extinction in HST images, and also with a spiral feature emitting 0.87mm continuum. This continuum emission must come essentially from cold dust heated by the interstellar radiation field. The HCN(4-3) and HCO+(4-3) lines were simultaneously mapped and detected in the nuclear spiral. The HCO+(4-3) line is 3 times stronger than the HCN(4-3), as expected when star formation excitation dominates over active galactic nucleus (AGN) heating. The CO(3-2)/HCO+(4-3) integrated intensity ratio is sim 100. The molecular gas is in remarkably regular rotation, with only slight non-circular motions at the periphery of the nuclear spiral arms. These perturbations are quite small, and no outflow nor AGN feedback is detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا