ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailoring high-order harmonic generation with nonhomogeneous fields and electron confinement

130   0   0.0 ( 0 )
 نشر من قبل Marcelo Ciappina ciappi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study high-order harmonic generation (HHG) resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that both the inhomogeneities of the local electric field and the confinement of the electron motion play an important role in the HHG process and lead to a significant increase of the harmonic cutoff. In order to understand and characterize this feature, we combine the numerical solution of the time dependent Schroedinger equation (TDSE) with the electric fields obtained from 3D finite element simulations. We employ time-frequency analysis to extract more detailed information from the TDSE results and to explain the extended harmonic spectra. Our findings have the potential to boost up the utilization of HHG as coherent extreme ultraviolet (XUV) sources.



قيم البحث

اقرأ أيضاً

High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $romega$ and $somega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field pos sesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the $C_{r+s}$ symmetry only the harmonics $n=q(r+s)pm r$, $q=1,2,ldots$, are emitted having the ellipticity $varepsilon_n=pm 1$. We illustrate this using the example of the planar molecules BH$_3$ and BF$_3$, which obey the $C_3$ symmetry. We show that for the BF$_3$ molecule, similarly to atoms with a $p$ ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.
116 - Axel Schild , E.K.U. Gross 2016
We present a novel ab-initio single-electron approach to correlated electron dynamics in strong laser fields. By writing the electronic wavefunction as a product of a marginal one-electron wavefunction and a conditional wavefunction, we show that the exact harmonic spectrum can be obtained from a single-electron Schrodinger equation. To obtain the one-electron potential in practice, we propose an adiabatic approximation, i.e. a potential is generated that depends only on the position of one electron. This potential, together with the laser interaction, is then used to obtain the dynamics of the system. For a model Helium atom in a laser field, we show that by using our approach, the high-order harmonic generation spectrum can be obtained to a good approximation.
We investigate the role of excited states in High-order Harmonic Generation by studying the spectral, spatial and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the po pulation of excited states can lead either to direct XUV emission through Free Induction Decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.
High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz f ields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half-cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single atom response yields an attosecond pulse train.
91 - C. Zagoya , M. Bonner , H. Chomet 2016
We investigate high-order harmonic generation in inhomogeneous media for reduced dimensionality models. We perform a phase-space analysis, in which we identify specific features caused by the field inhomogeneity. We compute high-order harmonic spectr a using the numerical solution of the time-dependent Schrodinger equation, and provide an interpretation in terms of classical electron trajectories. We show that the dynamics of the system can be described by the interplay of high-frequency and slow-frequency oscillations, which are given by Mathieus equations. The latter oscillations lead to an increase in the cutoff energy, and, for small values of the inhomogeneity parameter, take place over many driving-field cycles. In this case, the two processes can be decoupled and the oscillations can be described analytically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا