ﻻ يوجد ملخص باللغة العربية
Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in $^{252}$No and slow alignment in $^{254}$No are well reproduced by the calculations incorporating high-order deformations. The different rotational behaviors of $^{252}$No and $^{254}$No can be understood for the first time in terms of $beta_6$ deformation that decreases the energies of the $ u j_{15/2}$ intruder orbitals below the N=152 gap. Our investigations reveal the importance of high-order deformation in describing not only the multi-quasiparticle states but also the rotational spectra, both providing probes of the single-particle structure concerning the expected doubly-magic superheavy nuclei.
The multi-particle states and rotational properties of two-particle bands in $^{254}$No are investigated by the cranked shell model (CSM) with pairing correlations treated by a particle-number conserving (PNC) method. For the first time, the rotation
Nuclei in the $Zapprox100$ mass region represent the heaviest systems where detailed spectroscopic information is experimentally available. Although microscopic-macroscopic and self-consistent models have achieved great success in describing the data
The microscopic studies on nuclear fission require the evaluation of the potential energy surface as a function of the collective coordinates. A reasonable choice of constraints on multipole moments should be made to describe the topography of the su
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level all
We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function meth