ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-correlated time lags in the Z source GX 5-1: Possible evidence for a truncated accretion disk

314   0   0.0 ( 0 )
 نشر من قبل Kandulapati Sriram
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nature of the inner accretion disk in the neutron star source GX 5-1 by making a detailed study of time lags between X-rays of different energies. Using the cross-correlation analysis, we found anti-correlated hard and soft time lags of the order of a few tens to a few hundred seconds and the corresponding intensity states were mostly the horizontal branch (HB) and upper normal branch (NB). The model independent and dependent spectral analysis showed that during these time lags the structure of accretion disk significantly varied. Both eastern and western approaches were used to unfold the X-ray continuum and systematic changes were observed in soft and hard spectral components. These changes along with a systematic shift in the frequency of quasi-periodic oscillations (QPOs) made it substantially evident that the geometry of the accretion disk is truncated. Simultaneous energy spectral and power density spectral study shows that the production of the horizontal branch oscillations (HBOs) are closely related to the Comptonizing region rather than the disk component in the accretion disk. We found that as the HBO frequency decreases from the hard apex to upper HB, the disk temperature increases along with an increase in the coronal temperature which is in sharp contrast with the changes found in black hole binaries where the decrease in QPO frequency is accompanied by a decrease in the disk temperature and a simultaneous increase in the coronal temperature. We discuss the results in the context of re-condensation of coronal material in the inner region of the disk.

قيم البحث

اقرأ أيضاً

68 - K. Sriram , A.R. Rao , C. S. Choi 2010
We report the few hundred second anti-correlated soft lags between soft and hard energy bands in the source GX 339-4 using RXTE observations. In one observation, anti-correlated soft lags were observed using the ISGRI/INTEGRAL hard energy band and th e PCA/RXTE soft energy band light curves. The lags were observed when the source was in hard and soft intermediate states, i.e., in a steep power-law state.We found that the temporal and spectral properties were changed during the lag timescale. The anti-correlated soft lags are associated with spectral variability during which the geometry of the accretion disk is changed. The observed temporal and spectral variations are explained using the framework of truncated disk geometry. We found that during the lag timescale, the centroid frequency of quasi-periodic oscillation is decreased, the soft flux is decreased along with an increase in the hard flux, and the power-law index steepens together with a decrease in the disk normalization parameter. We argue that these changes could be explained if we assume that the hot corona condenses and forms a disk in the inner region of the accretion disk. The overall spectral and temporal changes support the truncated geometry of the accretion disk in the steep power-law state or in the intermediate state.
The simultaneous and coupled evolution of horizontal branch oscillation (HBO) and normal branch oscillation (NBO) in Z-type sources suggests that the production of HBO is connected to NBO and is caused by changes in the physical/radiative properties of the inner accretion disk, although there is a lack of substantial spectral evidence to support this. In this {it Letter}, we present the results of an analysis of a RXTE observation of a Z source GX~5-1, where the 6 Hz NBO is simultaneously detected along with a HBO at 51 Hz. The variations in the intensity and the associated power density spectrum indicate that the HBO and NBO are strongly coupled, originating from the same location in the inner accretion disk. The absence of HBO and NBO in the lower energy bands, an increase in the rms amplitude with energy and a smooth transition among them suggest that they are produced in the hot inner regions of the accretion disk. Based on a spectral analysis, we found a signature of changing or physically modified inner disk front during the coupled HBO and NBO evolution. We explore the various models to explain the observed phenomenon and propose that the NBO is affiliated to the oscillations in the thick/puffed-up inner region of the accretion disk.
We report on the RXTE detection of a sudden increase in the absorption column density, $N_mathrm{H}$, during the 2011 May outburst of GX 304-1. The $N_mathrm{H}$ increased up to ${sim}16times 10^{22}$ atoms cm$^{-2}$, which is a factor of 3-4 larger than what is usually measured during the outbursts of GX 304-1 as covered by RXTE. Additionally, an increase in the variability of the hardness ratio as calculated from the energy resolved RXTE-PCA light curves is measured during this time range. We interpret these facts as an occultation event of the neutron star by material in the line of sight. Using a simple 3D model of an inclined and precessing Be disk around the Be type companion, we are able to qualitatively explain the $N_mathrm{H}$ evolution over time. We are able to constrain the Be-disk density to be on the order of $10^{-11}$ g cm$^{-3}$. Our model strengthens the idea of inclined Be disks as origin of double-peaked outbursts as the derived geometry allows accretion twice per orbit under certain conditions.
We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its July 2014 outburst. The spectrum is soft with strong evidence for a broad Fe Kalpha line. Modeled with a relativistically broadened reflection model, we fi nd that the inner disk is truncated with an inner radius of 15+/-3 R_G. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B<5+/-2x10^8G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the t NuSTAR observation.
The Seyfert 1 galaxy NGC 4593 was monitored spectroscopically with the Hubble Space Telescope as part of a reverberation mapping campaign that also included Swift, Kepler and ground-based photometric monitoring. During 2016 July 12 - August 6, we obt ained 26 spectra across a nearly continuous wavelength range of ~1150 - 10,000A. These were combined with Swift data to produce a UV/optical lag spectrum, which shows the interband lag relative to the Swift UVW2 band as a function of wavelength. The broad shape of the lag spectrum appears to follow the $tau propto lambda^{4/3}$ relation seen previously in photometric interband lag measurements of other active galactic nuclei (AGN). This shape is consistent with the standard thin disk model but the magnitude of the lags implies a disk that is a factor of ~3 larger than predicted, again consistent with what has been previously seen in other AGN. In all cases these large disk sizes, which are also implied by independent gravitational microlensing of higher-mass AGN, cannot be simply reconciled with the standard model. However the most striking feature in this higher resolution lag spectrum is a clear excess around the 3646A Balmer jump. This strongly suggests that diffuse emission from gas in the much larger broad-line region (BLR) must also contribute significantly to the interband lags. While the relative contributions of the disk and BLR cannot be uniquely determined in these initial measurements, it is clear that both will need to be considered in comprehensively modeling and understanding AGN lag spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا