ترغب بنشر مسار تعليمي؟ اضغط هنا

Dineutron and the three-nucleon continuum observables

137   0   0.0 ( 0 )
 نشر من قبل Henryk Witala
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate how strong a hypothetical 1S0 bound state of two neutrons would affect different observables in the neutron-deuteron reactions. To that aim we extend our momentum space scheme of solving three-nucleon Faddeev equations to incorporate in addition to the deuteron also the 1S0 dineutron bound state. We discuss effects induced by dineutron on the angular distribution of the neutron-deuteron elastic scattering and cross sections of the deuteron breakup. A comparison to the available data for neutron-deuteron total cross sections and elastic scattering angular distributions cannot decisively exclude a possibility that the two neutrons can form 1S0 bound state. However, the strong modifications of a final-state-interaction peak of the neutron-deuteron breakup when changing from negative to positive values of the neutron-neutron scattering length seems to exclude existence of dineutron.



قيم البحث

اقرأ أيضاً

273 - Y. Z. Ma , F. R. Xu , N. Michel 2020
Starting from chiral two-nucleon (2NF) and chiral three-nucleon (3NF) potentials, we present a detailed study of 17Ne, a Borromean system, with the Gamow shell model which can capture continuum effects. More precisely, we take advantage of the normal -ordering approach to include the 3NF and the Berggren representation to treat bound, resonant and continuum states on equal footing in a complex-momentum plane. In our framework, 3NF is essential to reproduce the Borromean structure of 17Ne, while the continuum is more crucial for the halo property of the nucleus. The two-proton halo structure is demonstrated by calculating the valence proton density and correlation density. The astrophysically interesting $3/2^-$ excited state has its energy above the threshold of the proton emission, and therefore the two-proton decay should be expected from the state.
117 - P. Barletta , A. Kievsky 2008
This paper investigates the possible use of the Hyperspherical Adiabatic basis in the description of scattering states of a three-body system. In particular, we analyze a 1+2 collision process below the three-body breakup. The convergence patterns fo r the observables of interest are analyzed by comparison to a unitary equivalent Hyperspherical Harmonic expansion. Furthermore, we compare and discuss two different possible choices for describing the asymptotic configurations of the system, related to the use of Jacobi or hyperspherical coordinates. In order to illustrate the difficulties and advantages of the approach two simple numerical applications are shown in the case of neutron-deuteron scattering at low energies using s-wave interactions. We found that the optimization driven by the Hyperspherical Adiabatic basis is not as efficient for scattering states as in bound state applications.
308 - Y. Z. Ma , F. R. Xu , L. Coraggio 2020
Three-nucleon force and continuum play important roles in reproducing the properties of atomic nuclei around driplines. Therefore it is valuable to build up a theoretical framework where both effects can be taken into account to solve the nuclear Sch rodinger equation. To this end, in this letter, we have expressed the chiral three-nucleon force within the continuum Berggren representation, so that bound, resonant and continuum states can be treated on an equal footing in the complex-momentum space. To reduce the model dimension and computational cost, the three-nucleon force is truncated at the normal-ordered two-body level and limited in the $sd$-shell model space, with the residual three-body term being neglected. We choose neutron-rich oxygen isotopes as the test ground because they have been well studied experimentally, with the neutron dripline determined. The calculations have been carried out within the Gamow shell model. The quality of our results in reproducing the properties of oxygen isotopes around the neutron dripline shows the relevance of the interplay between three-nucleon force and the coupling to continuum states. We also analyze the role played by the chiral three-nucleon force, by dissecting the contributions of the $2pi$ exchange, $1pi$ exchange and contact terms.
We explore the constraints on the three-nucleon force (3NF) of chiral effective field theory ($chi$EFT) that are provided by bound-state observables in the $A=3$ and $A=4$ sectors. Our statistically rigorous analysis incorporates experimental error, computational method uncertainty, and the uncertainty due to truncation of the $chi$EFT expansion at next-to-next-to-leading order. A consistent solution for the ${}^3$H binding energy, the ${}^4$He binding energy and radius, and the ${}^3$H $beta$-decay rate can only be obtained if $chi$EFT truncation errors are included in the analysis. All of these except the $beta$-decay rate give essentially degenerate constraints on the 3NF low-energy constants, so it is crucial for estimating these parameters. We use eigenvector continuation for fast and accurate emulation of No-Core Shell Model calculations of the considered few-nucleon observables. This facilitates sampling of the posterior probability distribution, allowing us to also determine the distributions of the hyperparameters that quantify the truncation error. We find a $chi$EFT expansion parameter of $Q=0.33 pm 0.06$ for these observables.
199 - M. R. Robilotta 2006
Chiral symmetry allows two and three nucleon forces to be treated in a single theoretical framework. We discuss two new features of this research programme at $cO(q^4)$ and the consistency of the overall chiral picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا