ترغب بنشر مسار تعليمي؟ اضغط هنا

Onset of deformation at $N = 112$ in Bi nuclei

195   0   0.0 ( 0 )
 نشر من قبل Haridas Pai
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The high spin states in $^{195}$Bi has been studied by $gamma$-ray spectroscopic method using the $^{181}$Ta($^{20}$Ne, 6n) fusion evaporation reaction at 130 MeV. The $gammagamma$ coincidence data were taken using an array of 8 clover HPGe detectors. The spin and parity assignments of the excited states have been made from the measured directional correlation from oriented states (DCO) ratios and integrated polarization asymmetry (IPDCO) ratios. The results show, for the first time, the evidence of a rotational like band based on a 13/2$^+$ band head in this nucleus, indicating the onset of deformation at neutron number $N = 112$ for the Bismuth isotopes. The results obtained were found to be consistent with the prediction of the total Routhian surface calculations using Woods Saxon potential. The same calculations also predict a change in shape from oblate to triaxial in $^{195}$Bi at high rotational frequency.



قيم البحث

اقرأ أيضاً

Velocity and energy spectra of the light charged particles (protons and $alpha$-particles) emitted in the $^{28}$Si(E$_{lab}$ = 112 MeV) + $^{28}$Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle mu ltidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of $alpha$-particles emitted from the $^{28}$Si + $^{28}$Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous $alpha$-particle data from the $^{30}$Si + $^{30}$Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the A$_{CN}$ ~ 60 mass region.
In-source resonant ionization laser spectroscopy of the even-$A$ polonium isotopes $^{192-210,216,218}$Po has been performed using the $6p^37s$ $^5S_2$ to $6p^37p$ $^5P_2$ ($lambda=843.38$ nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in $^{200-210}$Po with a previous data set allows to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by Beyond Mean Field calculations.
153 - W.N. Catford 2013
The clustering of nucleons in nuclei is a widespread but elusive phenomenon for study. Here, we wish to highlight the variety of theoretical approaches, and demonstrate how they are mutually supportive and complementary. On the experimental side, we describe recent advances in the study of the classic cluster nucleus 24Mg. Also, recent studies of clustering in nuclei approaching the neutron drip line are described. In the region near N/Z=2, both theory and experiment now suggest that multi-centre cluster structure is important, in particular for the very neutron rich beryllium isotopes.
261 - X. Liu , W. Lin , R. Wada 2014
Symmetry energy, temperature and density at the time of the intermediate mass fragment formation are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope yields and anti-symmetrized molecular dynamics (AM D) simulations. The yields of primary hot fragments are experimentally reconstructed for multifragmentation events in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modified Fisher model, symmetry energy values relative to the apparent temperature, $a_{sym}/T$, are extracted. The extracted values are compared with those of the AMD simulations, extracted in the same way as that for the experiment, with the Gogny interaction with three different density-dependent symmetry energy terms. $a_{sym}/T$ values change according to the density-dependent symmetry energy terms used. Using this relation, the density of the fragmenting system is extracted first. Then symmetry energy and apparent temperature are determined in a self consistent manner in the AMD model simulations. Comparing the calculated $a_{sym}/T$ values and those of the experimental values from the reconstructed yields, $rho /rho_{0} = 0.65 pm 0.02 $, $a_{sym} = 23.1 pm 0.6$ MeV and $T= 5.0 pm 0.4$ MeV are evaluated for the fragmenting system experimentally observed in the reaction studied.
The dynamics present in the fusion of neutron-rich nuclei is explored through the comparison of experimental cross-sections at above-barrier energies with measurements of the interaction cross-section at relativistic energies. The increase of fusion dynamics with increasing neutron excess is clearly demonstrated. Experimental cross-sections are compared with the predictions of a Sao Paulo model using relativistic mean field density distributions and the impact of different interactions is explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا