ﻻ يوجد ملخص باللغة العربية
The magnetic behavior of single-crystalline CeCuGa3 has been investigated. The compound forms in a tetragonal BaAl4-type structure consisting of rare-earth planes separated by Cu-Ga layers. If the Cu-Ga site disorder is reduced, CeCuGa3 adopts the related, likewise tetragonal BaNiSn3-type structure, in which the Ce ion are surrounded by different Cu and Ga layers and the inversion symmetry is lost. In the literature conflicting reports about the magnetic order of CeCuGa3 have been published. Single crystals with the centrosymmetric structure variant exhibit ferromagnetic order below approx. 4 K with a strong planar anisotropy. The magnetic behavior above the transition temperature can be well understood by the crystal-field splitting of the 4f Hunds rule ground-state multiplet of the Ce ions.
Single crystal of CeMg$_{12}$ is obtained by Bridgman method. CeMg$_{12}$ crystallizes in the tetragonal structure with space group $I4/mmm$ (#139). The Laue pattern confirms the tetragonal crystal structure of CeMg$_{12}$. We have studied the magnet
We studied the properties of the antiferromagnetic (AFM) UNi0.5Sb2 (TN approx 161 K) compound in Sb-flux grown single crystals by means of measurements of neutron diffraction, magnetic susceptibility ({chi}), specific heat (Cp), thermopower (S), ther
The magnetic properties of perovskite CaVO3 single crystals have been studied by means of magnetoresistance r(T, H) and magnetization M(H) measurements in fields to 18T. At 2 K, the magnetoresistance is positive and a maximum value of Dr(18T)/r(0) =
We report the results of ac and dc magnetic susceptibility (chi) and electrical resistivity (rho) measurements on the single crystals of Er2PdSi3, crystallizing in an AlB2-derived hexagonal structure, for two orientations H//[0001] and H//[2 -1 -1 0]
We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-cryst