ﻻ يوجد ملخص باللغة العربية
We perform global fits to the parameters of the Constrained Minimal Supersymmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5,fb$^{-1}$ of integrated luminosity. We also include the most recent upper bound on the branching ratio $B_stomumu$ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, $(g-2)_{mu}$ in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for ${cal B}(B_stomumu)$ just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions.
We present the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model to simulated data from ILC and LHC with realistic estimates of the observable uncertainties. Higher order radiative corrections
Two major problems call for an extension of the Standard Model (SM): the hierarchy problem in the Higgs sector and the dark matter in the Universe. The discovery of a Higgs boson with mass of about 125 GeV was clearly the most significant piece of ne
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electro
We investigate the constraints on Supersymmetry arising from available precision measurements using a global fit approach. When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric
The program HDECAY determines the partial decay widths and branching ratios of the Higgs bosons within the Standard Model with three and four generations of fermions, including the case when the Higgs couplings are rescaled, a general two--Higgs doub