ﻻ يوجد ملخص باللغة العربية
We consider the chiral Lagrangian with a nonet of Goldstone bosons and a nonet of light vector mesons. The mixing between the pseudoscalar mesons eta and eta-prime is taken into account. A novel counting scheme is suggested that is based on hadrogenesis, which conjectures a mass gap in the meson spectrum of QCD in the limit of a large number of colors. Such a mass gap would justify to consider the vector mesons and the eta-prime meson as light degrees of freedom. The complete leading order Lagrangian is constructed and discussed. As a first application it is tested against electromagnetic transitions of light vector mesons to pseudoscalar mesons. Our parameters are determined by the experimental data on photon decays of the omega, phi and eta-prime meson. In terms of such parameters we predict the corresponding decays into virtual photons with either dielectrons or dimuons in the final state.
We study the reactions $gammagammarightarrow pi^0pi^0$, $pi^+pi^-$, $K^0bar{K}^0$, $K^+K^-$, $eta eta$ and $pi^0eta$ based on a chiral Lagrangian with dynamical light vector mesons as formulated within the hadrogenesis conjecture. At present our chir
A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from first-principles QCD without approximations [Wang et al., Phys. Rev. D61, (2000) 54011] is generalized to further include scalar, vector, and axial
We derive the chiral effective Lagrangian for excited heavy-light mesons from QCD under proper approximations. We focus on the chiral partners with $j_l^P=frac{3}{2}^+$ and $j_l^P=frac{3}{2}^-$ which amounts to ($1^+,2^+$) and ($1^-,2^-$) states resp
Various decays of eta and eta-prime are investigated within the framework of U(3) chiral effective field theory in combination with a relativistic coupled-channels approach. Final state interactions are included by deriving s- and p-wave interaction
The production of pseudo scalar, Eeta, Eta-prime, and vector, Omega, Rho, Phi, mesons in NN collisions at threshold-near energies is analyzed within a covariant effective meson-nucleon theory. It is shown that a good description of cross sections and