ترغب بنشر مسار تعليمي؟ اضغط هنا

Examination of the mass-dependent Li depletion hypothesis by the Li abundances of the very metal-poor double-lined spectroscopic binary G166-45

101   0   0.0 ( 0 )
 نشر من قبل Wako Aoki
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Li abundances of the two components of the very metal-poor ([Fe/H]=-2.5) double-lined spectroscopic binary G166-45 (BD+26 2606) are determined separately based on high resolution spectra obtained with the Subaru Telescope High Dispersion Spectrograph and its image slicer. From the photometric colors and the mass ratio the effective temperatures of the primary and secondary components are estimated to be 6350+/-100K and 5830+/-170K, respectively. The Li abundance of the primary (A(Li)=2.23) agrees well with the Spite plateau value, while that of the secondary is slightly lower (A(Li)=2.11). Such a discrepancy of the Li abundances between the two components is previously found in the extremely metal-poor, double-lined spectroscopic binary CS22876-032, however, the discrepancy in G166-45 is much smaller. The results agree with the trends found for Li abundance as a function of effective temperature (and of stellar mass) of main-sequence stars with -3.0<[Fe/H]<-2.0, suggesting that the depletion of Li at Teff ~ 5800K is not particularly large in this metallicity range. The significant Li depletion found in CS22876-032B is a phenomenon only found in the lowest metallicity range ([Fe/H]<-3).



قيم البحث

اقرأ أيضاً

We present high-resolution and high-quality UVES spectroscopic data of the metal-poor double-lined spectroscopic binary CS 22876--032 ([Fe/H] $sim -3.7$ dex), with the goal to derive the $^6$Li/$^7$Li isotopic ratio by analysing the ion{Li}{i} $lambd a$~670.8~nm doublet. We coadd all 28 useful spectra normalised and corrected for radial velocity to the rest frame of the primary star. We fit the Li profile with a grid of the 3D-NLTE synthetic spectra, to take into account the line profile asymmetries induced by stellar convection, and perform Monte Carlo simulations to evaluate the uncertainty of the fit of the Li line profile. We check that the veiling factor does not affect the derived isotopic ratio, $^6$Li/$^7$Li, and only modifies the Li abundance, A(Li), by about 0.15~dex. The best fit of the Li profile of the primary star provides A(Li)~$ = 2.17 pm 0.01$~dex and $^6$Li/$^7$Li~$=8^{+2}_{-5}$% at 68% confidence level. In addition, we improve the Li abundance of the secondary star at A(Li)~$= 1.55 pm 0.04$~dex, which is about 0.6~dex lower than that of the primary star. The analysis of the Li profile of the primary star is consistent with no detection of $^6$Li and provides an upper-limit to the isotopic ratio of $^6$Li/$^7$Li~$< 10$% at this very low metallicity, about 0.5~dex lower in metallicity than previous attempts for detection of $^6$Li in extremely metal poor stars. These results do not solve or worsen the cosmological $^7$Li problem, nor support the need for non standard $^6$Li production in the early Universe.
We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra, and compared to direct visu al inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ~80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 year are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.
We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ($lesssim$1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2-m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 $pm$ 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined vs. dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 02152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log $epsilon$ (Li) = 0.48 $pm$ 0.07, 1.62 $pm$ 0.02, and 1.07 $pm$ 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obta ined at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. We a im to derive the atmospheric parameters of the 31 SB2s in the TMBM sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. 32 epochs of FLAMES/GIRAFFE spectra are analysed using spectral disentangling to construct the individual spectra of 62 components. We apply the CMFGEN atmosphere code to determine their stellar parameters and their He, C and N surface abundances. From these properties, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. Components filling their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are rejuvenated. Their locations in the N-vsini diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched and rapidly rotating non-enriched) that cannot be reproduced through single-star population synthesis. This sample is the largest sample of binaries to be studied in such a homogeneous way. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا