ترغب بنشر مسار تعليمي؟ اضغط هنا

PAHs in protoplanetary disks: emission and X-ray destruction

171   0   0.0 ( 0 )
 نشر من قبل Frank Heymann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the PAH emission from protoplanetary disks. First, we discuss the dependence of the PAH band ratios on the hardness of the absorbed photons and the temperature of the stars. We show that the photon energy together with a varying degree of the PAH hydrogenation accounts for most of the observed PAH band ratios without the need to change the ionization degree of the molecules. We present an accurate treatment of stochastic heated grains in a vectorized three dimensional Monte Carlo dust radiative transfer code. The program is verified against results using ray tracing techniques. Disk models are presented for T Tauri and Herbig Ae stars. Particular attention is given to the photo-dissociation of the molecules. We consider beside PAH destruction also the survival of the molecules by vertical mixing within the disk. By applying typical X-ray luminosities the model accounts for the low PAH detection probability observed in T Tauri and the high PAH detection statistics found in Herbig Ae disks. Spherical halos above the disks are considered. We show that halos reduce the observed PAH band-to-continuum ratios when observed at high inclination. Finally, mid-IR images of disks around Herbig Ae disks are presented. We show that they are easier to resolve when PAH emission dominate.



قيم البحث

اقرأ أيضاً

The organic compounds HCN and C2H2, present in protoplanetary disks, may react to form precursor molecules of the nucleobases, such as the pyrimidine molecule, C4H4N2. Depending on the temperature in a given region of the disk, molecules are in the g as phase or condensed onto grain surfaces. The action of X-ray photons and MeV protons, emitted by the young central star, may lead to several physical and chemical processes in such prestellar environments. In this work we have experimentally investigated the ionization, dissociation and desorption processes of pyrimidine in the condensed and the gas phase stimulated by soft X-rays and protons, respectively. Pyrimidine was frozen at temperatures below 130 K and irradiated with X-rays at energies from 394 to 427 eV. In the gas phase experiment, a pyrimidine effusive jet at room temperature was bombarded with protons of 2.5 MeV. In both experiments, the time-of-flight mass-spectrometry technique was employed. Partial photodesorption ion yields as a function of the X-ray photon energy for ions such as C3H2+, HC3NH+ and C4H+ were determined. The experimental results were applied to conditions of the protoplanetary disk of TW Hydra star. Assuming three density profiles of molecular hydrogen, 1 x 10^6, 1 x 10^7 and 1 x 10^8 cm^-3, we determined HC3NH+ ion-production rates of the order of 10^-31 up to 10^-8 ions cm^-3 s^-1. Integrating over 1 x 10^6 yr, HC3NH^+ column density values, ranging from 3.47 x 10^9 to 1.29 x 10^13 cm^-2, were obtained as a function of the distance from central star. The optical depth is the main variable that affects ions production. In addition, computational simulations were used to determine the kinetic energies of ions desorbed from pyrimidine ice distributed between ~ 7 and 15 eV.
Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the central star (from optical to X-ray wavelengths) and viscous accretion are the main source of energy and dominates the disk physics and chemistry in its early stages. This is the environment in which the first phases of planet formation will proceed. We investigate how stellar and disk parameters impact the fine-structure cooling lines [NeII], [ArII], [OI], [CII] and H2O rotational lines in the disk. These lines are potentially powerful diagnostics of the disk structure and their modelling permits a thorough interpretation of the observations carried out with instrumental facilities such as Spitzer and Herschel. Following Aresu et al. (2011), we computed a grid of 240 disk models, in which the X-ray luminosity, UV-excess luminosity, minimum dust grain size, dust size distribution power law and surface density distribution power law, are systematically varied. We solve self-consistently for the disk vertical hydrostatic structure in every model and apply detailed line radiative transfer to calculate line fluxes and profiles for a series of well known mid- and far-infrared cooling lines. The [OI] 63 micron line flux increases with increasing FUV luminosity when Lx < 1e30 erg/s, and with increasing X-ray luminosity when LX > 1e30 erg/s. [CII] 157 micron is mainly driven by FUV luminosity via C+ production, X-rays affect the line flux to a lesser extent. [NeII] 12.8 micron correlates with X-rays; the line profile emitted from the disk atmosphere shows a double-peaked component, caused by emission in the static disk atmosphere, next to a high velocity double-peaked component, caused by emission in the very inner rim. (abridged)
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investiga te the utility of CO as an alternate probe of disk mass, we use ALMA to survey $^{13}$CO and C$^{18}$O J = $3-2$ line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from 0.03 -- 2 M$_{odot}$ in the nearby Chamaeleon I star-forming region. We detect $^{13}$CO emission from 17 sources and C$^{18}$O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical ISM CO-to-H$_2$ ratios of $10^{-4}$, the resulting gas masses are implausibly low, with an average gas mass of $sim$ 0.05 M$_{Jup}$ as inferred from the average flux of stacked $^{13}$CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.
The dominant reservoirs of elemental nitrogen in protoplanetary disks have not yet been observationally identified. Likely candidates are HCN, NH$_3$ and N$_2$. The relative abundances of these carriers determine the composition of planetesimals as a function of disk radius due to strong differences in their volatility. A significant sequestration of nitrogen in carriers less volatile than N$_2$ is likely required to deliver even small amounts of nitrogen to the Earth and potentially habitable exo-planets. While HCN has been detected in small amounts in inner disks ($<10$ au), so far only relatively insensitive upper limits on inner disk NH$_3$ have been obtained. We present new Gemini-TEXES high resolution spectroscopy of the 10.75 $mu$m band of warm NH$_3$, and use 2-dimensional radiative transfer modeling to improve previous upper limits by an order of magnitude to $rm [NH_3/H_{nuc}]<10^{-7}$ at 1 au. These NH$_3$ abundances are significantly lower than those typical for ices in circumstellar envelopes ($[{rm NH_3/H_{nuc}}]sim 3times 10^{-6}$). We also consistently retrieve the inner disk HCN gas abundances using archival Spitzer spectra, and derive upper limits on the HCN ice abundance in protostellar envelopes using archival ground-based 4.7 $mu$m spectroscopy ([HCN$_{rm ice}$]/[H$_2$O$_{rm ice}$]$<1.5-9$%). We identify the NH$_3$/HCN ratio as an indicator of chemical evolution in the disk, and use this ratio to suggest that inner disk nitrogen is efficiently converted from NH$_3$ to N$_2$, significantly increasing the volatility of nitrogen in planet-forming regions.
105 - Ruud Visser 2018
Aims: The two stable isotopes of nitrogen, 14N and 15N, exhibit a range of abundance ratios both inside and outside the solar system. The elemental ratio in the solar neighborhood is 440. Recent ALMA observations showed HCN/HC15N ratios from 83 to 15 6 in six T Tauri and Herbig disks and a CN/C15 N ratio of 323 +/- 30 in one T Tauri star. We aim to determine the dominant mechanism responsible for these enhancements of 15N: low-temperature exchange reactions or isotope-selective photodissociation of N2. Methods: Using the thermochemical code DALI, we model the nitrogen isotope chemistry in circumstellar disks with a 2D axisymmetric geometry. Our chemical network is the first to include both fractionation mechanisms for nitrogen. The model produces abundance profiles and isotope ratios for several key N-bearing species. We study how these isotope ratios depend on various disk parameters. Results: The formation of CN and HCN is closely coupled to the vibrational excitation of H2 in the UV-irradiated surface layers of the disk. Isotope fractionation is completely dominated by isotope-selective photodissociation of N2. The column density ratio of HCN over HC15N in the disks inner 100 au does not depend strongly on the disk mass, the flaring angle or the stellar spectrum, but it is sensitive to the grain size distribution. For larger grains, self-shielding of N2 becomes more important relative to dust extinction, leading to stronger isotope fractionation. Between disk radii of ~50 and 200 au, the models predict HCN/HC15N and CN/C15N abundance ratios consistent with observations of disks and comets. The HCN/HC15N and CN/C15N column density ratios in the models are a factor of 2-3 higher than those inferred from the ALMA observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا